
Securing Dynamic Firmware Updates of Mixed-Critical Applications

George Kornaros and Svoronos Leivadaros
Informatics Engineering Department

University of Applied Sciences Crete

71004 Heraklion, Crete, Greece

Email: kornaros@ie.teicrete.gr

Abstract—This work introduces a secure framework for run-

time updating of firmware in Internet of Things devices that

execute mixed-critical applications. Taking advantage of the ca-

pabilities of modern heterogeneous System-on-Chip devices to

run cores in asymmetric multiprocessing (AMP) configuration,

we developed a methodology to showcase dynamic updating of

real-time applications in a novel secure way when executing on

a Xilinx ZYNQ-based platform. As an exemplary implemen-

tation we demonstrate a bio-signal monitoring use case that

reads accelerometer data to determine if a person has fallen,

while a distant medical management system can dynamically

perform firmware updates. Even sophisticated code injection

or reuse attacks can be subverted with the proposed defenses

that ensure a practically isolated environment for the critical

firmware with negligible overhead to the device in terms of

performance and cost.

Keywords– Secure firmware update, Asymmetric embedded multripro-

cessing, trusted dynamic realtime update

1. Introduction

With the advent of new technologies to develop smart
devices and wide deployment of WI-Fi networks, Internet
of Things (IoT) is growing at a very fast pace. IoT devices
can be any kind of computing system but is usually a
type of embedded system such as smartphones, household
appliances, sensors and actuators to monitor environmental
conditions and act accordingly, surveillance cameras with
pattern recognition capabilities, weather monitoring systems
and many others.

However, security issues have arisen regarding the pro-
tection of sensitive data handled by some of the devices
connected to the Internet of Things, the devices themselves
or the gateways that connect IoT devices to company and
manufacturer networks. Until a few years ago, security
wasn’t a high priority since manufacturers of embedded
devices utilizing the IoT relied on the concept of security by

obscurity to avoid malicious third-parties from hacking into
and stealing sensitive data or tampering with devices that
execute critical applications. IoT security concerns various
aspects, such as securing of on-device confidential or private
data, security of connected devices’ communication links
or their interfaces themselves, authenticity of software and
updates and protection of intellectual property.

Security breaches have been reported in the recent past
exploiting system vulnerabilities. Between 2010 and 2014,

Cyber attackers successfully compromised the security of
U.S. Department of Energy computer systems more than
150 times [1]. Miller and Valasek showcased a weakness
in the CAN bus connecting the Electronic Control Units of
the Fiat Chrysler Automobile by remotely connecting to the
car’s system attacking communications [2]. Glissom et al.,
investigated the viability of compromising a mannequin pa-
tient used in medical simulation training environment [3]. As
shown by the results of this work, only moderate knowledge
in computer science and information technology is needed
to successfully compromise the security of a medical device
with connectivity capabilities. The connectivity of these
devices to a public network can compromise the security
of the device if no countermeasures are employed such as
using authentication mechanisms and data encryption.

In this scope we developed a framework to resolve end-
to-end security issues that the IoT interconnected devices
face while supporting run-time firmware updates. Today,
modern Systems-on-Chip (SoCs) typically employ hetero-
geneous compute resources, or even processor components
in asymmetric multiprocessing (AMP) configurations, which
are called remote processors. This strategy inherently en-
ables strong isolation of compute resources. These remote
AMP processors are commonly used to control latency-
sensitive sensors, or drive random hardware blocks in sup-
port of real-time behavior [4][5]. Additionally, AMP mode
can also offer a significant advantage of a securely exe-
cuting application by significantly reducing the ability of
adversaries to tamper this code in this isolated environment.
However, since any firmware running on the remote proces-
sor has access to the whole of system memory and is in
kernel mode, it effectively runs with Linux root privileges
[6]. Thus, any interaction with firmware should be subject to
the necessary security policy in the target system to prevent
exploits.

In this work we propose architecture extensions in AMP
organizations that rise up to the device stack to continuously
maintain the trusted computing base. The main contribution
involves a method and infrastructure to support trustworthy
dynamic updating of key parameters and firmware of time-
critical applications in a mixed-critical environment, through
using standard encryption and authentication control mech-
anisms with negligible overheads to the device in terms of
performance and cost. While in this paper we focus on
Internet of things devices and on evaluating our method
using a health-care use case, there are many additional

application areas, e.g. in cloud computing.

2. Related Work

Many academic researchers and information technology
companies have released studies on security issues of IoT.
Sachin Babar et al. [7]analyze the issue of security in IoT.
They divide attacks/security breaches that an IoT device
may receive, into categories. They go through the necessary
security principles that a system needs to implement to
ensure secure operation and data protection. Rolf H. Weber
[8] covers the new security challenges that the emergence
of IoT has brought with it. He outlines the requirements that
a IoT-based system must meet and describes the legal and
legislator aspect of the IoT.

Mentor Graphics has released the Mentor Embedded
Multicore Framework (MEMF) [9], a commercial multicore
system development framework based on the OpenAMP
that allows embedded system developers to deploy multi-
ple operating systems and applications across homogeneous
or heterogeneous multicore processors. Xilinx has released
works [26][29] describing principles and configurations that
developers should adopt on their products to ensure secure
booting and operation of an embedded system, but with
no uptake. While hardware-supported Trusted Execution
Environments (TEE) using TI’s M-shield [10] and ARM
Trustzone [11] are widely deployed today, they are typically
constrained in terms of code and data memory. For instance
SSL/TLS control is hardly performed within TEE due to
resource constraints.

Intel’s TXT extensions [12] provide a measured and
controlled launch of system software that will then estab-
lish a protected environment for itself and any additional
software that it may execute. Similarly, Trusted Computing
Group (TCG) [13] defines a Root of Trust for Measurement
(RTM) that executes on each platform reset; Further, TCG
defined Dynamic Root of Trust Measurement in Trusted
Computing systems in its specification as a technology for
measured platform initialization while system is in running
state. Flicker [14] and Trust Visor [15] are solutions that
implement DRTM. In synergy with these technologies we
propose hardware assisted methods that also remove the
slow Trusted Platform Module hardware from the systems’
critical path.

Researchers have also proposed hardware memory pro-
tection schemes for low-cost devices [16]. These can be pro-
grammed in software, while they allow flexible management
of memory and peripheral I/O regions without burdening the
CPU. However, Trustlite requires all software components
to be loaded and configured at boot time, while our proposal
supports dynamic secure updates.

To secure embedded devices against software vulnera-
bilities various works offer efficient solutions mostly in OS
level, such as BINtegrity [17], which addresses mitigation
of memory corruption attacks. However, it requires kernel-
based runtime support resulting in OS overheads, and hence
it is hardly useful in real-time critical applications. C-FLAT
[18] is a mechanism that allows precise verification of an
application’s control flow to detect attacks on embedded

systems that are increasingly deployed in safety-critical in-
frastructures. To achieve application isolation, virtualization
is widely adopted where the security critical point is the
hypervisor and its sensitivity to attacks [19][20]. Thus, the
hypervisor must be part of the Trusted Computing Base
(TCB), with reduced interactions and commonly require
significant hardware support to perform efficient resource
distribution and isolation. Complementary to such solutions,
but with reduced requirements in costs, we support isolated
environment and authentication when updating a critical
application or when distant communication with a critical
application is conducted. Our contributions focus in avoiding
system calls with non-encrypted information among “nor-
mal” and “secure” worlds (e.g. in ARM-based TEE) and in
avoiding resulting derived keys to live in normal user-space
RAM.

3. Preliminaries in Security Concerns

To tackle the aforementioned security issues we devel-
oped a framework to process and isolate sensitive data on
an embedded IoT device and most importantly to support
dynamic firmware updates in a secure and trustworthy way.
In general, the input and output data during the operation
of a system can be categorized in three types of data that
need to be secured:

• Data sent remotely from a distant device to our host
device (Transmitted Data)

• Data transferred using memory-to-processor and
processor-to-processor links (Processed Data)

• Data stored in storage medias used for the operation
of a device (Stored Data)

The reason we classified our data is because differ-
ent types of data need different methodologies to secure.
Transmitted data need to be encrypted before sent to a
device in order to prevent man-in-the-middle attacks. To this
end in our framework the connection between the devices
uses SSH-based authentication and authorization to send out
updates and new thresholds from the distant management
system to any bio-metric device. Initially, data to send are
encrypted by using the AES encryption algorithm with a
key available only to the distant management system and
to the bio-metric device. Finally, the received message to
the device is decrypted and also authenticated by using an
HMAC algorithm.

Processed data (with potential associated properties of
deadlines in their processing or authenticity/integrity) need
to be isolated from the data handled by a conventional
OS. For this reason we used the OpenAMP framework
[11][12] to develop a system running in Asymmetric Multi-
Processing mode to allow one processor to run a Linux
system and another processor to run Real-Time applications
handling sensitive data.

Stored data should be stored encrypted and only de-
crypted when we need them in our applications. Sensitive
data in our system cannot be accessed by non-legitimate
users.

3.1. Threat Model

We consider an infrastructure of networked nodes, where
each node consists of a low-end microcontroller. These
nodes can be subject of attacks that aim at executing unau-
thorized privileged code. The attack can include injection of
malicious code or escalation of the privilege level of user
space binaries. Since our nodes support dynamic updating
of parameters of the critical soft (or even hard) real-time
firmware, or updating of the firmware itself, we also con-
sider man-in-the-middle attacks and adversaries that attempt
to impersonate a trusted distant infrastructure manager. Our
system can prevent the damage that can result from having a
compromised OS, a hijacked communication link, or unau-
thorized firmware credentials. Encrypted data, encryption
keys that are typically stored in volatile memory (DRAM)
are also vulnerable to unauthorized hacking, warm or cold-
boot attacks [21]. Our proposed method enables dynamic
firmware updates in a secure way, without the need to
design tamper detection and scrubbing circuits for protection
against such type of attacks. Even if the adversary has full
knowledge of the application’s memory layout and has full
control over the program’s stack and heap to inject new
return addresses (i.e., return oriented programming [30]),
we show that in our framework the firmware can still run in
a secure isolated memory space. In this work we consider
cache-based timing attacks out the scope, or side-channel
attacks such as differential power analysis or differential
electromagnetic analysis.

3.2. Use Case

We evaluate our framework through implementing a Bio-
signal Monitoring and Remote Medical Management Sys-
tem, which allows us to run software on devices equipped
with tri-axial accelerometer sensors that can detect falls. In
addition, this system implements a distant management and
updating system that allows an authorized individual such
as a doctor to update critical parameters of the bio-metric
device, e.g. the accelerometer thresholds which determine
the device’s fall detection sensitivity (and alert indications
triggered by a fall).

The algorithm used to detect falls is described by Y.He
et al. [22]. This algorithm extracts three key values from
tri-axial accelerometer data and compares these values with
specific thresholds in order to detect activity levels of indi-
viduals and whether someone has fallen or not. The three
key values are:

• Signal Magnitude Area (SMA): describes the degree
of change of human motion at any given time (sam-
ple). High values indicate sudden change in motion

• Signal Magnitude Vector (SMV): describes the vec-
tor sum of acceleration a person feels in at any
given time (sample). High values indicate high total
acceleration

• Tilt Angle (TA): describes the angle of the person
in degrees at any given time (sample)

The application reads samples in discrete time intervals.
The discrete equations that compute these values for the i-th
sample of a data set follow.

SMAi =
1

i
(

i
∑

u=1

|xu|+

i
∑

u=1

|yu|+

i
∑

u=1

|zu|) (1)

SMV i =
√

xi
2 + yi2 + zi2 (2)

TAi = arcsin(
yi

SMVi

) (3)

In order to detect a fall, we compare each sample from our
data with a specific threshold value. If, for a given sample,
all three key values exceed a certain threshold, it is assumed
that the person wearing that device has fallen.

In our application, the three types of data in regard to
the classification are:

• New thresholds for the fall detection algorithm
(Transmitted Data)

• Accelerometer data being read and processed to
deduce whether a person has fallen or not (Processed
Data)

• The accelerometer data and threshold values, stored
in files for emulation or bookkeeping reasons (Stored
Data)

4. System Architecture and Implementation

We developed the fall-detection application in a Zynq-
based Zedboard platform. The Zynq Z7020 SoC on the Zed-
board contains a dual-core 667MHz ARMv7 32b Cortex-A9
CPU with a NEON SIMD unit along with a 53.2K LUT,
220 DSP-block, 560 kB BlockRAM FPGA connected over
AXI port rated at 800 MB/s. The Zynq processing system
runs Petalinux [28] using a version 4.0.0 Linux kernel in an
Asymmetric MultiProcessing (AMP) configuration.

In an AMP configuration, the processors are assigned
their own memory regions, which allows data isolation.
An inter-process communication (IPC) protocol is important
for exchanging info between the different processors of the
AMP configuration as shown in figure 1. The device running
in AMP mode uses a Master-Slave communication model,
in the sense that one processor or cluster of processors (the
master) is responsible for managing the life cycle of the
other processor or cluster of processors (the slave/s).

The OpenAMP framework utilizes two key compo-
nents to establish an AMP configuration, the Remoteproc
framework[23] and the RPMsg framework [24]. The re-
moteproc framework allows a master processor to control
(power on, load firmware, power off) the remote (slave)
processors while abstracting the hardware differences. The
RPMsg protocol is a virtio-based shared memory protocol
for inter-process communication. It uses a shared buffer
to allow exchange of data between two processors. Cur-
rently the maximum size of the buffer’s size is limited to
512 bytes. We implemented the AMP configuration of the
system by using the OpenAMP framework [25][27] to run

User Applications

Executable Code

Remoteproc, RPMSG, Virtio
Modules

Baremetal Environment (BSP) Linux OS

Cortex A9
CPU0

Cortex A9
CPU1 Memory

CPU1

Memory
CPU0

System Interconnect

QSPI Flash
Block RAM

Figure 1. Architecture layout of the Zedboard-based system running in
AMP mode; off-chip QSPI Flash stores the first and second stage boot
loaders along with the kernel.

Linux on one processor of the Zedboard for non-critical
applications and the bio-metric processes needed to detect
a fall on the other processor. Petalinux was configured
to operate the Zedboard in AMP configuration while also
enabling RPMsg and remoteproc modules, and we included
the Dropbear/SSH package to enable secure file transmission
between Remote Management System and the Zedboard
platform.

4.1. AMP Linux/Baremetal System Architecture

CPU0 loads Linux from the rootfs partition of the SD
card and is responsible for booting CPU1 and loading the
remote monitoring application and handling basic I/O oper-
ations that allow CPU1 to read a file. CPU1 is responsible
for reading the accelerometer data, for running the fall
detection algorithm and printing the data on the console
output. CPU1 and CPU0 have access to different parts of the
system memory. The segregated allocation of memory to our
processors allows us to deny access of one processor to the
memory assigned to the other, thus isolating and protecting
the sensitive data and software running on CPU1 from the
non-critical applications running on Linux on CPU0.

Both processors use a small amount of shared memory
defined by the RPMsg protocol, a virtio-based inter-process
communication protocol that the OpenAMP framework uses
to facilitate data transmission between CPU0 and CPU1
in kernel space. This shared memory is used to perform
firmware updates transferring the thresholds from the master
monitor application part running on CPU0 to the remote
monitor application running on CPU1. The accelerometer
data are typically read directly by the CPU1 from the ac-
celerometer peripheral sensors. However, we emulated this
process by feeding data to the CPU1 through the RPMsg
channel.

CPU0 uses the remoteproc protocol to boot CPU1 and
load the remote monitoring application. After CPU0 initial-
izes CPU1, CPU1 runs the remote monitoring application
on the memory and returns a name service back to CPU0.
Next, the master application allocates the RPMsg buffer for
shared memory and uses the name service as an identifier to
link the two processes. Basic I/O operations executed by the
remote processor will be carried out by the master processor
and their data will be written on the RPMsg device and read
by CPU1.

In practice, the device is activated, i.e., the fall detection
process begins when the middle button on the Zedboard is
pressed. Initially, the three threshold key values are retrieved
by requesting the encrypted thresholds.txt file stored in the
filesystem. CPU1 then copies the ciphertext to its allocated
memory and then decrypts the ciphertext using the same
private key used when the data was encrypted on the distant
management system. The application reads pre-sampled tri-
axial accelerometer data which are stored in text files in the
following format:

-0.795;9.87;0.393

-0.804;9.84;0.373

-0.804;9.8...

where each line is one sample and the ‘;’ symbol is
used to split each sample to three separate values. Each
value is the acceleration measurement in the X, Y, Z axis
respectively.

These custom values, which are actually accelerometer
data captured in a file, are stored in the root home directory
of the Linux system running on CPU0 of the Zedboard. The
remote application requests the accelerometer data located in
the filesystem of CPU0. After reading the data, the remote
application enters a loop, where a monitoring process is
activated by calling the fall detect() function. The result
is printed in the console through the RPMsg buffer. We
can dynamically update the algorithm thresholds using the
distant management service that we developed (as shown in
Fig. 2). The new thresholds take effect after decryption and
successful authentication.

Figure 2. Distant medical management system layout

4.2. Medical Management System Architecture

The distant management system can be any Linux-based
operating system with the SSH package installed. For this
implementation we used the development host machine as
the distant medical manager. Because we included the Drop-
bear/SSH package on the Zedboard GNU/Linux OS when
we configured our Petalinux project, we are able to establish
a secure shell connection to remotely manage the device.

We developed an automated way (via scripting com-
mands) that allows an authorized user to input new SMA,
SMV and TA thresholds. The new thresholds are then parsed
to a thresholds.txt file, which is signed by the OEM by
adding an HMAC digest. It is then encrypted using the
AES algorithm, and sent to the device through using the
SSH protocol. This is the file that the remote application
on CPU1 opens when it needs the thresholds for the fall
detection algorithm. Notice, that authentication services may
be supported by the medical manager and not by the man-
ufacturer.

To use the thresholds, CPU1 uses the same private key,
which was used to encrypt the thresholds file on the server,
to decrypt the file. Then, CPU1 uses the plaintext created
to generate an HMAC digest which is then compared to the
original generated digest in order to detect whether someone
tampered with the data during transmission.

The thresholds update functionality can run concurrently
with the fall detection application. Thus, no system reset is
needed since the new thresholds take effect immediately.

5. System Operation

When the development board boots from the external
QSPI Flash (figure 1), u-boot initializes the AES encryption
key and the HMAC key on an internal BRAM inside the
programmable logic. While secure booting is supported
in Xilinx Zynq-based platforms1, the zedboard does not
support encrypted bitstream programming. Only CPU1 has
immediate access to this BRAM and uses these private keys
when a critical parameters update is applied. The same keys
are used on the distant management system (provided by the
manufacturer) to ensure the secure update of the thresholds.

We run the fall detection algorithm using the middle
push button on the Zedboard to initiate the process. The
console output of the device reports as follows in Figure 3.

Figure 3. Output report of fall-detection application

5.1. Distant Management System Operation

After verifying the fall detection application functions
correctly while providing a predictable timing behavior
(since it is executed in CPU1), we executed the Remote
Management Service on the Distant Development Machine
(Fig. 2) to dynamically alter the thresholds. Figure 4 depicts
the console output of the thresholds update service.

Figure 5 shows the flow diagram that describes the steps
required to perform the transmission of the new thresholds in
order to ensure the confidentiality and integrity of the data.
The distant management system transmits the update packet
to the device manufacturer to generate the HMAC, which in
turn is encrypted in order to remotely perform the firmware
update. The device contains the secret key originally set
by the manufacturer which is needed to authenticate the
firmware updates. Hence, when the new update packet is
received initially it is decrypted using the secret key that is
shared between the distant manager and the device and then
the decrypted data are authenticated.

1. through using the battery-backed RAM or the eFUSE array (an on
chip one time programmable (OTP) non-volatile memory)

Figure 4. Output report of threshold update service

An incoming update operation cannot be tampered since
the encryption keys are only accessible by the remote pro-
cessor (CPU1); essentially, CPU0’s memory map does not
include the secret storage in the programmable logic. Essen-
tially, the Operating System on top of CPU0 has no insight
whatsoever of any resource located inside the programming
logic. If a man-in-the-middle interferes, or a violation is
attempted by an unauthorized-untrusted application that runs
on CPU0, then the update packet that is delivered to CPU1
is just discarded.

Firmware
parameters

Remote Management System

Secret Key Used for Encryption

HMAC
Digest

Secret Key Used for Signing

Firmware
parameters

Encrypted Message

Original Equipment Manufacturer

Biometric Device

Secret Key Used for Decryption

Non-secure World
(CPU0)

Encrypted Message

HMAC
Digest

Firmware
parameters

Secret Key for Authentication

Firmware
parameters

Secure World
(CPU1)

Secure communication (TLS)

Secure communication (TLS)

Processing System

Programmable Logic

 Figure 5. Flow diagram of the threshold update procedure

After multiple attempts to send unauthorized packet
updates to CPU1 we rerun the fall detection application on
the Zedboard without resetting the system, but only a single
trusted update is validated and the algorithm thresholds
changed. Figure 6 depicts the validation result. The thresh-
olds take effect immediately after authentication, causing the
fall detection algorithm to avoid detecting a fall.

The decryption and authentication algorithm of the
thresholds costs 410 µsec for the Cortex-A9, while the fall-
detection algorithm requires more than 36 msec to pro-
vide a decision. To accommodate for other use-cases the
authentication process should not be a burden to the time
constraints of the time critical application. Thus, we inte-
grated a SHA-256 hardware engine, accessible only by the
CPU1. The SHA-256 accelerator implements the standard
SHA algorithm, defined in the national institute of standards

Figure 6. Output of Fall Detection Algorithm after updating the thresholds

and technology (NIST) as a U.S. federal information pro-
cessing standard (FIPS) 180-3. The SHA-256 engine digest
a message down to a 256-bit result in less than 70 10ns
clock cycles.

5.2. Secure Firmware Update

To achieve hardware isolation and attack-shielded dy-
namic updates, we developed the organization shown in
figure 7. The key feature is that both the keys and the critical
code itself are never present in the platform RAM that is
directly accessible by the “normal” world or by external
attacks to system memory. Hence, this extension enables a
critical application to defend itself from a tampered OS.

The encrypted message is streamed to the hardware
decrypt and it is buffered locally to further examine the
computed SHA-256 digest. Two block RAMs (BRAMs)
are maintained inside the programmable logic to store the
trusted binary code; these BRAMs are memory-mapped only
to CPU1’s address space. Essentially, one BRAM buffer
serves as a shadow memory to store a new firmware code
while it is authenticated; at the same time CPU1 executes the
currently active firmware that is located in the sibling buffer.
The two buffers are used interchangeably in a seamless way,
since the CPU1 is notified by a returned address pointer in
the active buffer.

After CPU1 delivers the encrypted message to the hard-
ware secure engine, CPU1 examines the status register of the
hardware secure engine to identify when the new update is
ready, if authentication is successful. When it is validated,
the function base address is retrieved and CPU1 invokes
the new code from the internal BRAM. Even if an evildoer
manages to gain control of CPU1, there is no path for CPU1
to write to its internal code memory, the BRAM buffer.
The hardware write port of this BRAM buffer is internally
controlled by the secure engine. Hence, notice that only after

authentication a new firmware can be transferred in the

BRAM. Our low-level driver of the hardware secure engine
provides the next application programming interface call to
the CPU1.

status_t compute_SMA (

sma_value_t (*callback)(accelerometer_t agent,

void *data), void *data)

As a proof of concept we developed the critical compu-
tation of the SMA value (i.e., equation (1)) in two different
codes. When the device boots the first version of the SMA
code runs and during the operation we transmit an update
with the second version of the SMA function. CPU1 after
validating the new update in 2.16ms, CPU1 discovers the
trusted/secure function to compute the Signal Magnitude
Area (SMA) value in the internal BRAM and then uses
this callback function pointer to process the current data
samples.

Biometric Device

Secret Key Used for Decryption

Non-secure World
(CPU0)

Encrypted Message

HMAC
Digest

Firmware
Code

Secret Key for Authentication

Firmware
Code

Secure World
(CPU1)

Processing System

Programmable Logic

Buffer0

Buffer1

Firmware
address

Write Only path

Read
Only
path

Figure 7. Hardware supported firmware updating through full decryption
and authentication and code RAM configuration in hardware; notice that
CPU1 has only read access to code RAM by hardware construction, while
intermediate code variables of equations (1),(2) and (3) are kept in registers.

Additionally, inspired by the Trusted Platform Module
(TPM) specification of the Trusted Computing Group (TCG)
[13] we developed a Device Configuration Register, hereby
named DCR, to securely store and attest the state of the
device by essentially maintaining a device firmware update
metric. The particular integrity metric that forms the device
state is measured as cryptographic hash. Actually the DCR
can not be simply overwritten with a new value, but only
be extended with a new measurement. The new value of
the extended DCR is computed as follows: DCRNEW =
HF(DCROLD || value to add) where HF is a cryptographi-
cally secure hash function with a block size of 256-bits. In
this alternative realization it is computed by the SHA-256
hardware core. Through this metric the distant manager can
identify the device status. The hardware cost is dominated
by the area occupied by the SHA-256 core of 2412 LUTs.

Despite the successful progress of modern techniques
such as return-oriented programming (ROP) [30] that can
easily circumvent executable space protection in both
x86 (NX bit) and ARMv8-M architecture (eXecute-Only-
Memory, XOM [31]), our proposed method ensures the
firmware to run in isolated private memory space and only
after it has been cryptographically validated. Our target to
achieve runtime firmware updates is free from code reuse
attacks and thus free from complex software or hardware
solutions against ROP like control-flow integrity (CFI) to
restrict program execution to a pre-defined control-flow
graph (CFG) or code randomization (e.g., ASLR). These
can still have impact to the Linux environment but there is
no way to bypass the proposed defense mechanism on the
isolated firmware.

6. Conclusions

There are three main methods by which our data are se-
cured in this implementation. First, by using the OpenAMP
framework we segregated the memory available between the
two processors. This makes it harder for malware running on
the memory space of CPU0 to corrupt data and programs
handled in the memory space of CPU1, providing a way
to protect our processed data. Second, we use the AES
algorithm to encrypt the new thresholds and firmware on the
distant management system before we send it through using
secure communication. The update is delivered in encrypted
form to the remote processor (CPU1) and decrypted only
when needed by CPU1, with the assistance of custom crypto
circuitry that works in parallel while the real-time code
runs. In order to ensure data integrity and authenticity, we
used the HMAC algorithm before integrating either new
thresholds or new firmware. The private keys are loaded
on the development board’s BRAM during the U-Boot
loading stage. Hardware accelerated integrity and authen-
tication are controlled by the sealed environment of CPU1,
thus providing a minimized trusted code base (TCB) and
isolation from the legacy OS. Additional layers of security
can be added to our system, to enhance providing a dynamic
root of trust for measurement (DRTM), so that the system
can be attested for integrity at run-time. We anticipate the
support of multiple protection containers and implementing
mechanisms for authenticating a connection for machine-to-
machine communication; we consider encrypting transmit-
ted data with different light-weight encryption algorithms
taking into account the capabilities that IoT devices have
in computing power or the requirements in low power
consumption, or low availability of computing resources.

Acknowledgment

This research was supported by funding from the Eu-
ropean Union (EU) Horizon 2020 project TAPPS (Trusted
Apps for open CPSs) under RIA grant No 645119.

References

[1] S. Reilly, 2015, USA Today, (2015, Sep 11)
Records: Energy Department struck by cyber attacks
http://www.usatoday.com/story/news/2015/09/09/cyber-attacks-
doe-energy/71929786/.

[2] A. Greenberg, 2015, (2015, July 21) Hackers Remotely Kill a Jeep on
the Highway With Me in It https://www.wired.com/2015/07/hackers-
remotely-kill-jeep-highway.

[3] W. B. Glisson, J. T. McDonald, T. R. Andel, S. M. Campbell,
M. Jacobs, and J. Mayr, “Compromising a medical mannequin”, in P.

Rico: Americas Conference on Information Systems (AMCIS), 2015.

[4] M. Redfearn, “MIPS remote processor driver for managing linux and
real-time processing,” in Embedded World 2017 Conference, 2017.

[5] Samsung Semiconductor Inc., 2016, Samsung Bio-Processor For
Health Monitoring White Paper.

[6] Imagination Technologies Limited, 2016, MIPS OS Remote Processor
Driver Whitepaper.

[7] S. Babar, A. Stango, N. Prasad, J. Sen, and R. Prasad, “Proposed
embedded security framework for internet of things (IoT),” in 2nd

International Conference Wireless VITAE, pp. 1–5, 2011.

[8] Weber R. H., “Internet of things - new security and privacy chal-
lenges,” Comput. Law Secur. Rev., vol. 26, no. 1, pp. 23–30, 2010.

[9] Mentor, 2016, mentor Embedded Multicore Framework (MEMF),
https://www.mentor.com/embedded-software/multicore.

[10] J. Azema and G. Fayad, 2008, m-Shield mobile security technology:
Making wireless secure. Texas Instruments, White Paper.

[11] ARM, 2009, ARM Security Technology, Building a Secure System
using TrustZone Technology, White Paper PRD29-GENC-009492C.

[12] J. Greene, 2016, Intel Trusted Execution Technology, WhitePaper,
www.intel.com/txt.

[13] Trusted Computing Group, 2014, Trusted Platform Module Library
Specification, Family “2.0”, Level 00, Revision 01.16 Oct. 2014.

[14] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An execution infrastructure for tcb minimization,” in Pro-

ceedings of the 3rd ACM SIGOPS/EuroSys European Conference on

Computer Systems 2008, Eurosys’08, 2008, pp. 315–328.

[15] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig, “Trustvisor: Efficient tcb reduction and attestation,” in
Proceedings of the 2010 IEEE Symposium on Security and Privacy,
SP’10, 2010, pp. 143–158.

[16] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “Trustlite:
A security architecture for tiny embedded devices,” in Proceedings of

the Ninth European Conference on Computer Systems, EuroSys’14,
2014, pp. 10:1–10:14.

[17] M. Neugschwandtner, C. Mulliner, W. Robertson, and E. Kirda,
“Runtime integrity checking for exploit mitigation on lightweight
embedded devices,” in International Conference on Trust and Trust-

worthy Computing, 2016, pp. 60–81.

[18] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd,
A.-R. Sadeghi, and G. Tsudik, “C-FLAT: Control-flow attestation
for embedded systems software,” in Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security,
CCS’16, 2016, pp. 743–754.

[19] R. J. Masti, C. Marforio, K. Kostiainen, C. Soriente, and S. Capkun,
“Logical partitions on many-core platforms,” in Proceedings of the

31st Annual Computer Security Applications Conference, ACSAC’15,
2015, pp. 451–460.

[20] D. Rosenberg, 2014, QSEE TrustZone kernel integer over flow vul-
nerability, In Black Hat Conf.

[21] J. A. Halderman, “Lest we remember: Cold-boot attacks on encryp-
tion keys,” Communications of the ACM, vol. 52, no. 5, pp. 91–98,
May 2009.

[22] Y. He, Y. Li, and C. Yin, “Falling-incident detection and alarm by
smartphone with multimedia messaging service (mms),” E-Health

Telecommunication Systems and Networks, vol. 1, no. 1, 2012.

[23] The Linux Kernel Organization Inc., 2016, Remoteproc
Framework Linux Documentation, www.kernel.org/
doc/Documentation/remoteproc.txt.

[24] The Linux Kernel Organization Inc., 2016, RPMsg framework Linux
Documentation, www.kernel.org/doc/Documentation/rpmsg.txt.

[25] MCA, 2016, multicore Association Working Groups,
http://www.multicore-association.org/workgroup/oamp.php.

[26] Xilinx, 2015, Leveraging Asymmetric Authentication to Enhance
Safety-Critical Applications, xilinx.eetrend.com/files-eetrend-xilinx/
download/201512/9574-21502-wp468asym-auth-zynq-7000.pdf.

[27] Xilinx, 2016, Xilinx wiki, OpenAMP
www.wiki.xilinx.com/OpenAMP.

[28] Xilinx, 2016, Petalinux SDK Design Tools,
www.xilinx.com/products/design-tools/embedded-software/petalinux-
sdk.html.

[29] Xilinx, 2015, Secure boot of Zynq-7000 All-Programmable
SoC http://japan.zylinks.com/support/documentation/application
notes/xapp1175 zynq secure boot.pdf.

[30] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
Proceedings of the 17th ACM Conference on Computer and Commu-

nications Security, CCS’10, 2010, pp. 559–572.

[31] J. Yiu, 2015, ARMv8-M Architecture Technical Overview Whitepa-
per.

