

Using a Secure IoT Platform Based on STM32 MCUs

George Kornaros

Univ. of Applied Sciences of Crete, Iraklio, Crete, GR

Lausanne, March 30, 2017

IoT Risks

- IoT systems do not have well defined perimeters
- IoT systems are highly dynamic and continuously evolve because of mobility
- IoT are highly heterogeneous with respect to:
 - Communications
 - Platforms
 - Devices
- IoT systems include physically unprotected portions

512

Population

Connected Devices

Significantly expanded attack surface

50

2020

25 BILLION

7.28

3.5x

BILLION

6.88

28

IoT Ecosystem Security

- IoT ecosystem relies on
 - confidential and trusted communications
 - Encryption end to end
 - Sender authentication
- Applications secure execution
 - Root of trust: each 'stage' verifies the integrity and/or authenticity of the next stage
 - Process partitioning, memory-space partitioning
- Secure storage, data at rest
 - Encrypt sensitive application data
 - Encrypt sensitive customer personal data

Misc Industrial Solutions

<u>ARTIK 1</u> features a MIPS32based, dual-core application processor, flash storage, a crypto engine and Bluetooth Smart radios for communication DeepCover[®] embedded security solutions cloak sensitive data under multiple layers of advanced physical security to provide the most secure key storage possible.

Open IoT Ecosystem

Gateway: STM32F779NI

- STM32F779NI microcontroller
 - with 2-Mbyte Flash memory
 - 512+16+4-Kbyte RAM
 - CAN,I2C,RS232,Eth,USB
 - Cryptographic acceleration

Remote Attack through Network I/Fs

Secure Execution Environment

STM32 F7 Disco

- Remote firmware update, malware attack
- CAN-based attack: compromised CAN messages
- REE tamper ECU functionality

Remote Attack through ODB

STM32-469 FreeRTOS

Secure CAN BUS

SEcube: Single Chip Security Platform

- STM32 M4, Floating Point, Low Power CPU
- FPGA for Hardware Custom Developments
- Security Controller (Smart Card)

SEcube FPGA Firewall

STMF7 Interfacing

Gateway Architecture

Cryptolib: Cryptographic Modular Middleware

- AES-256
- SHA-512
- Elliptic Curve Digital Signature Algorithm (ECDSA)
- Certified by the Federal Information Processing Standard (FIPS), and National Institute of Standards and Technology (NIST).

Encryption Accelerators

• NIST FIPS 197 compliant implementation of AES

Crypto Acceleration on STM32F779NI

Key Management

• A secret key becomes insecure when used for a long time

RSA-based Key Management

RSA-based Key Management (cont)

Mixed-critical Environment using STM32F746

Headroom with Video Streaming to STM32F7

- Raw (BMP) video streaming over Eth-UDP
- 23.8 fps
 - 16bit_Q 240x136x2bytes
 - 16bit_H 300x170x2bytes
- 20-60Mbps Eth BW

STM32F7 Utilization

Video Streaming on STM32F7

Questions ?

Thank you!

Contact

George Kornaros

Email: kornaros@ie.teicrete.gr

TAPPS

Trusted **Apps** for open CPSs

Co-funded by the Horizon 2020 Framework Programme of the European Union under grant agreement no 645119

www.tapps-project.eu