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ABSTRACT

Cyber-physical systems (CPS) are devices with sensors and actuators which link the physical with the 
virtual world. There is a strong trend towards open systems, which can be extended during operation by 
instantly adding functionalities on demand. We discuss this trend in the context of automotive, medical 
and industrial automation systems. The goal of this chapter is to elaborate the research challenges of 
ensuring security in these new platforms for such open systems. A main problem is that such CPS apps 
shall be able to access and modify safety critical device internals. Cyber-physical attacks can affect the 
integrity, availability and confidentiality in CPS. Examples range from deception based attacks such 
as false-data-injection, sensor and actuator attacks, replay attacks, and also denial-of-service attacks. 
Hence, new methods are required to develop an end-to-end solution for development and deployment of 
trusted apps. This chapter presents the architecture approach and its key components, and methods for 

open CPS apps, including tool chain and development support.
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INTRODUCTION

Cyber-physical systems (CPS) are devices with sensors and actuators, which link the physical with the 
virtual world. In many application areas of CPS such as automotive or medical, devices are long-lived 
and users depend on them in their daily lives. In the past, many of these systems have been operating 
unchanged for years or even decades in a well-defined context. With the rapid innovation cycles in 
many IT services and technologies, there is also a need to extend or update these services. For instance, 
functionality in cars has been used as originally shipped for the full lifetime of a car. With the latest in-
novations in infotainment and autonomous driving, it is expected that this functionality is outdated after 
a few years. Thus, there is a strong trend towards open cyber-physical systems, which can be extended 
by instantly adding functionalities on demand.

Cyber-physical attacks can affect the integrity, availability and confidentiality in such CPS. Examples 
range from deception based attacks such as false-data-injection, sensor and actuator attacks, replay at-
tacks, and denial-of-service attacks. Attacks penetrating the integrity of vehicular systems and medical 
devices have brought to sharp focus the urgency of securing cyber-physical systems. For networked 
CPS systems, a number of external and internal attacks can threaten the correct and safe operation of 
the system. For instance, internal CPS nodes or networks may be compromised, which may affect the 
safety and reliability of the overall system.

This chapter presents the research challenges and solutions of ensuring security and safety in such 
open systems. Today CPS apps support openness for updates of existing functionality. A main issue 
though, is that such CPS apps are able to access and modify safety critical device internals. Thus, it is 
not sufficient to isolate the apps from other parts of the system, as they typically need to access and 
control parts of the system. The apps must not be able to interfere or compromise proper operation of 
the system at any time. For the new apps, there can be different levels of trust. Yet, even for fully trusted 
software components, programming errors, software weaknesses or failures can lead to a compromised 
situation. The focus of the chapter is to show how different technologies that span different architectural 
levels can be used and combined to provide the required security and trustworthiness.

New methods and technologies are required to develop an end-to-end solution for development and 
deployment of trusted apps (Prehofer, Kornaros, & Paolino, 2015). Such methods and technologies are 
the building blocks for a new architectural approach. The overall idea is to provide a layered approach, 
consisting of multiple, independent defense mechanisms. In conjunction with the layered architecture, 
different classes of applications are defined, depending on their criticality.

An overview organization of an open cyber-physical system is shown in Figure 1. This figure shows 
a network of CPS nodes, which are orchestrated to perform distributed control services, commonly 
monitoring and actuation services, and user interaction tasks. For these kind of networks, there is often 
a need for real-time communication, hence networks like CAN or deterministic Ethernet are used. In an 
open cyber-physical system architecture, usually an Open Apps Platform device is acting as a gateway 
that connects to external untrusted networks. Besides its gateway functionality, this device also provides 
an open platform for adding new application software, hereby called as “apps”. The gateway functionality 
of the device is needed for many applications that execute in the gateway or in the CPS nodes, but also 
for managing the applications themselves on the gateway. As CPSs’ functionality becomes more and 
more software dominated and the interaction between the physical and cyber systems increases, CPSs 
become more susceptible to external and internal attacks.
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This work reviews current state-of-the-art challenges and solutions in support of open cyber-physical 
systems and presents a set of building blocks for a secure and trusted architecture, which comprises 
independent solutions that range from extensions of communication protocols and creation of Execution 
Environments (EE), to securing real-time resource management and model-based development. Specifi-
cally, this work makes the following contributions:

• It introduces the concept of Execution Environments (EE) and Apps Platform (AP), which is an 
isolated context of execution: CPS is enabled to execute its code inside isolated partitions, while a 
“special” EE is introduced for real-time-like and safety-critical applications. EEs address sensitive 
code execution and secure exposed networking functions and at the same time provide transpar-
ency with respect to the way the apps are created and certified.

• Protocols and mechanisms are surveyed and secure extensions by design are proposed to strength-
en security in distributed CPS devices and networks at the same time. This work is motivated by 
the need to ensure safety and trust due to augmented attack surface of CPS networks, due to the 
integration of larger number of interoperable devices, and most importantly due to increased soft-
ware components and open-ness.

• An overview is presented on the challenges posed by the integration of real-time tasks within an 
open CPS on multi-core platforms, and then this work presents the high-level concept of a safety 
integration layer as a solution to guarantee real-time properties in an open CPS.

• In the scope of open CPS we introduce the concept of model-based development, via combining 
the standard development practices in C/C++ programming with the modeling approach. The 
integration of formal verification in the development of apps is proposed to ensure safety and se-
curity related properties of open CPS functions.

Figure 1. Open CPS Architecture
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This chapter is organized as follows: The first section discusses the application domains in which 
open CPS platforms are already playing or will play a dominant role. Next, the challenges that imply 
openness in this kind of CPS platforms are analysed as well as the requirements that are imposed by 
open CPS platforms and result from the listed challenges. Following is the presentation of innovative 
technologies that are needed for guaranteeing security and trustworthiness in such open CPSs. These 
technologies provide a multi-layered defense strategy from the hardware level with mechanisms such as 
ARM’s TrustZone, through the coexistence of three execution environments, to the development sup-
port for critical applications by a trusted toolchain that supports verification by model checking. Finally, 
future directions are sketched for open CPS platforms.

APPLICATION DOMAINS

Open Cyber Physical Systems (CPSs) create new opportunities for value creation across the whole soci-
ety and in particular enterprises will benefit from the flexibility and 3rd party’s services developing and 
providing applications. For industries like automotive, health, utilities, transportation, home entertain-
ment and agriculture that are increasingly using cyber physical systems, open CPSs are providing new 
business opportunities. For example, sensors and actuators monitoring farms, which are connected with 
management systems, are enabling real-time adaptive and highly efficient farming. Another example are 
vehicles exchanging information and apps that may improve traffic flow and parking slots assignment. 
These examples are just scratching the surface of the possibilities that secure and trusted apps, operating 
in open CPS platform context, can provide. Extensions and updates of functionality during operation 
using apps for CPS devices, like vehicles and medical devices, that have a long lifetime when compared 
to innovations in the ICT area, has the additional benefit of extending the CPSs usage.

The trend towards open CPS devices and apps-based platforms for vehicles is currently a highly 
active topic in the automotive domain. Traditionally, protection in this domain has been achieved by 
partitioning components across distributed modules, which communicate over a network such as a CAN 
bus. However, when applications are able to access that network, there are several ways to break the 
protection. Therefore, new concepts and implementations are needed at hardware and software level 
to enforce security and safety for the driver when using open CPSs as envisaged by Stankovic (2014). 
Here it has to be distinguished between apps that interface with external, well known Internet services 
and access only status information of vehicles, and highly trusted apps (or so called critical apps), which 
can also access critical information and settings. An example for the first app category is the check of 
the route based on traffic and battery condition of the e-vehicle. On the other side, an app that changes 
settings in the engine control of a vehicle like brakes or gears according to environment conditions such 
as weather and terrain is highly critical.

Also in the healthcare market, medical devices require high-level secured architecture and trusted 
apps due to the increasing risk of cyberattacks. Such attacks can cause critical and physical damages if 
the targets are e.g. wearable and implantable CPSs, surgical robots or drug delivery systems, threatening 
people health and/or producing concrete economic damages to healthcare systems, especially in terms of 
patient safety. Although it is not possible to quantify the impact of cyberattacks on healthcare devices, 
there are many reports on damages already caused (Burns, Johnson, & Honeyman, 2016). It is therefore 
evident that healthcare devices must include strong security mechanisms to ensure, on the one hand, 
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patients’ safety, and on the other hand, privacy and security of data. Once security mechanisms can be 
guaranteed through a trusted platform, the medical device producers in the healthcare domain will benefit 
from the use of trusted apps for updating and improving functionality of their devices.

Other domains like those in the context of Industry 4.0 and avionics are addressing security and 
trustworthiness of open CPSs, too. New approaches and technologies are being developed or existing 
ones are adapted and/or extended to be used in the areas of factory automation and cyber-physical pro-
duction systems. In the aerospace field, the trends are the increasing complexity of the mixed-criticality 
systems and the need of less weight and volume. These challenges are addressed among others using 
multi-core platforms and the co-hosting of applications of different criticalities like the proposal of 
Anderson, Baruah, & Brandenburg (2009).

An analysis of the requirements in the different domains regarding support for open cyber physical 
systems will provide the basis for the development of a domain-independent platform for trusted open 
CPSs.

OPEN CPS REQUIREMENTS

Authors of (Stankovic, 2014) sketch a very futuristic vision of new applications enabled by the sensing 
and actuation utility and plethora of embedded devices (such as mobile phones, vehicles, etc.) connected 
altogether to the Internet. Cars as well as aircrafts talking to each other to avoid collisions or uploading 
of a physiological data to doctors in real-time with real-time feedback are examples of such vision. It is 
not just the applications themselves that will change but also their installation and execution which will 
become much easier. To reach these benefits, the provision of an open platform is necessary. These ben-
efits of an open platform are however challenged with the new problems that span across many aspects.

1.  Extension and definition of new communication interfaces and contracts for specifying interactions 
will be needed, to enable the exchange of information of diverse systems cooperating within the 
sensing and actuation utility. This is important, especially if considering the flexibility of an open 
platform to accept new applications during its operation, where applications might have to com-
municate not only between themselves, but also directly with different resources which in many 
cases are highly critical (e.g. physical brakes).

2.  An important challenge of future open CPS platforms is to allow the execution of multiple applica-
tions of different criticality, essentially supporting mixed-criticality environments. This poses an even 
larger challenge for multi-core based platforms. The integration of mixed-criticality subsystems can 
lead to a significant and potentially unacceptable increase of engineering and certification costs if 
proper preconditions specification isn’t put in place. For example, in order to prevent consolidated 
applications that run on a multi-core platform from interfering with each other, spatial and temporal 
isolation of the shared resources is mandatory (Richter, Herber, Rauchfuss, Wild, & Herkersdorf, 
2014).

3.  Analysis techniques such as response time analysis to validate real-time properties will have to be 
tailored, or elaboration of new types of analysis will be necessary. For example, in the context of 
an open platform, extensive checks before a new application is accepted for running will have to 
be made to determine whether real-time properties of already deployed apps will not be affected.
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4.  In many cases, concepts of futuristic applications directly or indirectly influence safety-critical parts 
of the CPS devices or exchange large amount of sensitive data. Consequently, the main challenge is 
to ensure security and safety. Malicious activity has continued to follow advances in technology, as 
it can now be seen with exploitation of mobile devices and infrastructure. Unfortunately, it might 
be impossible to reuse some of the currently existing security solutions as they consume lots of 
memory and require heavyweight computational power. Hence new, lightweight algorithms might 
be needed to find the balance between security and for instance power consumption of devices that 
will employ them (Jing, Vasilakos, Wan, Lu, & Qiu, 2014).

5.  The techniques for design, integration and deployment of applications in such highly distributed 
ecosystem have to be considered as well. For instance, programming languages must allow inher-
ent integration of time-based computation with event-based computation, which will enable to 
effectively model asynchronous dynamics that take place at different temporal and spatial scales 
(Khaitan and McCalley, 2015).

6.  Software development itself for CPS is a sophisticated endeavor which yields many challenges 
(Stankovic, 2014). Therefore, new development tools will be needed to address the new philosophy 
of apps development, integration and deployment and to support techniques for their analysis.

Accordingly, when considering the highlighted challenges, a successful approach for open CPS 
platform should guarantee the integrity, safety, security of the system and additionally guarantee some 
non-functional properties such as real-time requirements. In that respect the key requirements, which 
need to be addressed by the open CPS platform, are:

1.  App Middleware: Which will comprise solutions for communicating apps that are loaded dynami-
cally. Apart from the inter-app communication, it should also secure the access to critical resources. 
This mainly results from the challenge (i).

2.  App Isolation: Which results from the challenge (i) and (ii). Spatial as well as temporal separation 
is required so the applications can be executed in parallel, without any undesirable influence from 
the outside apps. Unless intended, any influence on app data or its execution behavior should be 
prevented.

3.  Access Control and Resource Management: Yields another solution to the (i) challenge. Access 
to crucial resources and functions offered by the platform should be controlled. For example, entry 
to the critical communication interface such as the CAN bus should be restricted to apps which 
are certified or require real-time execution. Also, proper management or safeguarding of resources 
through the execution platform is required. This is to prevent from possible damage of the resource 
or its unlimited blocking by one app, causing violation of real-time properties of other applications 
which also require an access to it.

4.  Real-Time Support and Analysis Techniques: To prevent timing delays is a response to challenge 
(iii). Apps running on the CPS platform in many cases need to perform real-time computation, 
e.g. real-time traffic update or even live video feed of a planned route for the vehicle driver (Wan, 
Zhang, Zhao, Yang, & Lloret, 2014). Guarantees for real-time behavior needs to be given consider-
ing parallel execution of other applications on the same platform, which might equally be real-time 
oriented. For this, platform should offer real-time support, e.g. via usage of a real-time operating 
system, whereas development tools can offer analysis techniques (e.g. schedulability analysis) to 
verify observance of real-time properties even before the deployment.
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5.  Reliability Regimes and Privacy Policies: To deal with safety and security challenges as presented 
in (iv). CPS platform should support several reliability regimes for safe and secure operation of 
safety critical applications. Modes such as fail-operational, fail-safe or fail-secure fall within this 
group. Concerning privacy policies, apps deployed on the platform might have to include specifi-
cation of them so that the requests handled by the app can be first evaluated in respect to them.

6.  App Development: New ways for developing applications as specified in challenge v) might be 
needed. A good practice is to support the standard development methods (e.g. C or C++ program-
ming) to attract a wide community of developers but on the other side elaboration of new approaches, 
such as those based on the model based development, is necessary. The last provides more abstract 
and hence clearer perspective on system architecture, delivers a set of reusable components and 
enable several kinds of analysis methods to be run on the models (e.g. model checking or schedu-
lability analysis) which contributes as well to safety and security challenges, i.e. (iii), (iv).

Fulfillment of the aforementioned requirements, which has a direct impact on the critical, two non-
functional properties, i.e. safety and security of such open CPS platforms, can be accomplished by 
incorporating multiple safety/security layers, spanning from the trusted hardware, through computing 
and network virtualization, communication middleware, up to the point in which apps are developed. 
Usage of specific technologies might be required to support such multiple lines of defense constituting 
an end-to-end approach. Each of the technologies that is described in more details below, and constitute 
our set of contributions, could be used in a standalone manner. However, their combination forming 
multiple lines of defense, increases the assurance for fulfillment of the discussed requirements.

END-TO-END SOLUTION

In next generation, open cyber-physical systems, where malfunctions could cost lives, security concerns 
increasingly raise, with largely evolving communication, system and software architecture, to guarantee 
a trusted app infrastructure it is mandatory to provide multiple safety-security layers to prevent mali-
cious behavior and external attacks. Several technologies are identified as imperative installments into 
a multi-layered defense strategy of an open CPS. On the hardware level, mechanisms such as memory 
management units, or ARM TrustZone (ARM Limited, 2009) is widely used in order to separate dif-
ferent execution environments. Additionally, Virtualization is recently used to provide virtual execu-
tion environments, isolation and protection of resources and spatial plus temporal isolation of apps. 
Next is communication middleware for securing and controlling the inter app communication as well 
as for controlling access to different resources. Lastly, the support for the safety and security concept 
can be achieved by employing a specific toolchain. The development of critical applications might be 
restricted to the usage of such a trusted toolchain. Through incorporating of analysis and verification 
techniques, a toolchain might certify safe and secure operation of an application regarding monitoring 
of non-functional constraints and correct execution behavior, even before the deployment. Finally, the 
critical apps developed with a trusted toolchain can be checked by trusted third-party that will issue a 
certificate acknowledging their safe and secure behavior.

A Trusted apps platform needs to ensure strong isolation and real-time properties for some apps. This 
cannot be assured by existing non-real-time operating systems. Moreover, existing platforms are character-
ized by high complexity and support for many different APIs, which is a potential loophole for security 
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threats. It is easier to assure safety and security of operation when considering more limited operating 
systems. On the other side, to attract app developers it is essential that the platform offers features, such 
as feature-rich developer support, or simply compatibility with existing platforms and tools. This opens 
up a possibility for reusing currently existing tools, already developed applications or simply developers’ 
knowledge. These contradictory concerns pose an interesting research challenge for developing execution 
platform that can provide multiple execution environment (EEs) intended for apps of different types and 
needs. Applications with a lower criticality can be run on systems like Linux or Android but enhanced 
with protection mechanism discussed above. High criticality apps can on the other hand be executed on 
the smaller, real-time operating system. This of course means less support in terms of APIs but on the 
other side it can assure more timely behavior of safety-critical and real-time use-cases.

EXECUTION ENVIRONMENTS AND APPS PLATFORM

As mentioned earlier in this chapter, it is of crucial importance that open CPS platforms are able to ad-
dress security and safety requirements. In the Section “Application Domains” different app categories 
have been envisioned, each of them associated to a different level of criticality. This concept has been 
later formalized in Section “Open CPS Requirements” as requirement (ii). On the other hand, as discussed 
in Section “End-to-End Solution”, these apps cannot just be executed in some operating system. The 
context of execution, or EE, (including CPU, RAM, operating system and peripherals) of such apps has 
to be selected carefully and differentiated accordingly to the apps being run. For instance, as stated by 
the requirement (vi), some of these EEs might need to provide real-time support, constraining consider-
ably the characteristics of the EE. This section gives an overview of architectures and techniques used 
to realize systems capable of running multiple EEs, ranging from common solutions like virtualization, 
to more complex, hardware dependent, solutions.

Hardware manufacturers are now proposing an increasing number of SoCs that fit the open CPS plat-
forms use case, i.e. they support real-time execution and strong isolation for non-interfering applications 
of mixed levels of criticality. For instance, ARMv8 processors are examples of commonly used CPUs 
that include, in one package, virtualization and TrustZone extensions, two technologies presented in the 
“End-to-End Security” Section combination of which can have interesting applications in the context of 
open CPSs, as will be discussed in the following lines.

The use of virtualization for instantiating Virtual Machines is nowadays a widely-used technique, 
which allows to flexibly deploy almost any operating system, the guest OS, on top the host OS, offering 
to the former an isolated partition in which to execute. The host OS is usually a general-purpose OS like 
Linux which, together with KVM, offers a solid virtualization infrastructure used in millions of servers 
out there, sustaining most of the cloud services running nowadays.

Considering an OS the only possible “guest” of a Virtual Machine is too limiting: virtualization 
can also be used to secure single applications that run alone inside a Virtual Machine, on top of a very 
simple OS (Kivity et al., 2014). In essence, a Virtual Machine can either be a self-sustained system that 
serves one or more functions, or it can be as well a component in a disaggregated architecture which 
exploits virtualization to distribute applications and services to different Virtual Machines according 
to some design choices. In CPS contexts, virtualization can therefore find a viable solution for running 
non-interfering applications in one unique platform, by confining to different execution environments 
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the applications of the CPS. As a matter of fact, the high degree of isolation brought by virtualization 
comes with a cost. In fact, the more Virtual Machines are running in the system, the higher is the emula-
tion overhead, which translates to higher resources usage of the host OS.

Clustering applications to Virtual Machines according to their criticality can be the best compromise 
between isolation and overhead: an application running in one Virtual Machine will be closer to ap-
plications of similar criticality, allowing for faster communication with its siblings. On the other hand, 
two applications of different criticality will necessarily run in different Virtual Machines, with a more 
complex communication mechanism interposed between them. With no surprise, such a communica-
tion introduces additional overhead: no matter what protocol will be used to allow information passing 
between the Virtual Machines, the communication will necessarily require at some point a device to 
be used, involving additional emulation. Luckily, modern virtualization techniques are able to alleviate 
emulation overhead, consequently lowering communication costs. As an example, paravirtualized de-
vices, using at their own advantage the awareness of running on a virtual environment, permit to shorten 
the long code paths that are typically required by a faithful emulation of real devices (Russel, 2008). 
Low-latency communication is also possible between Virtual Machines. In fact, the implementation of 
ad-hoc devices and corresponding drivers for the guest OSes allow to have performance comparable to 
shared memory-based communication mechanisms (Macdonell et al., 2011). In essence, virtualization 
is now able to offer high isolation at a relatively low price, assuming that state-of-the-art solutions are 
employed and tuned to the specific use case.

Virtualization can therefore be used to instantiate corresponding Virtual Machines, each of them, for 
one “execution environment”, which hosts services and applications of a given criticality. For everything 
which is not safety critical, an OS like Linux, Windows or Android can fit and be deployed in these 
execution environments; this would allow to cover use cases from the execution of the IVI system in a 
car to the provisioning of web services in a connected device.

The architecture depicted so far does not fit the use cases of CPS executing applications that have to 
obey the safety-critical requirements. Such applications come often with real-time constraints that have 
to be fulfilled as well. Moreover, in the most demanding cases, those safety-critical applications require 

Figure 2. Open CPS example architecture
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also to be certified according to some safety standard (for instance, ISO 26262 in the automotive domain, 
or the EN 50128 for the railway systems). In these cases, general-purpose OSes can’t be considered as 
viable solutions, in that they are not real-time, nor certified.

It has been demonstrated (Prehofer et al., 2016) that the ARM Trust-Zone extension can be used to 
run simultaneously in the same CPU two different OSes, a general-purpose and a real-time one. The 
so-called Secure side in the CPU, which is normally used to implement secure services, is instead used 
as isolated compartment to run the real-time OS, adding in this manner a new execution environment 
for safety-critical applications and services. By using in a clever way, the capabilities of the ARMv8 
architecture, it is possible to guarantee that the real-time OS is periodically and deterministically sched-
uled, if needed at the expenses of the general-purpose OS which has lower priority. The safety critical 
execution environment keeps nevertheless its secure connotation since it runs in a secure segment of the 
system RAM and uses secure devices that are not shared with the general-purpose OS. This makes the 
safety-critical execution environment ideal to host trusted services (encryption, decryption, fingerprint 
validation, etc.), addressing once more another requisite of modern CPS systems.

SECURE AND REAL-TIME RESOURCE MANAGEMENT

One big challenge of future Open CPSs is to allow the execution of multiple applications of different 
criticality, so called mixed-criticality environments. Anderson, Baruah, and Brandenburg (2009) and 
Mollison, Erickson, Anderson, Baruah, and Scoredos (2010) presented that this poses an even larger 
challenge for multi-core based platforms. In mixed-criticality environments it is of special interest to 
manage the information flow, i.e., communication, between low-critical and high-critical apps, as other-
wise provided information from a low-critical app could compromise a receiving high-critical task (Sha, 
2009). Furthermore, Pellizzoni et al. (2009) demonstrated that integrated mixed-criticality systems can 
be made safer by enforcing application specific constraints. Guaranteeing a safe integration of mixed-
criticality tasks on one platform is also a matter of guaranteeing a proper real-time behavior for critical 
apps, even though low-critical apps are executed in parallel. Determining valuable worst case execution 
bounds for applications on multi-core platforms, however, is an own research challenge (Jacobs, 2013; 
Mushtaq, Al-Ars, & Bertels, 2013). The main reason for that are implicitly (e.g., buses) and explicitly 
(e.g., memory) shared resources. Kotaba, Nowotsch, Paulitsch, Petters, and Theiling (2013) provide a 
comprehensive list of shared resources on contemporary multi-core platforms in conjunction with the 
possible interferences that can change the timing of resource accesses. These concerns and challenges 
has led to the specification of requirements such as (ii), (iii) and (iv) presented in “Open CPS Require-
ments” section.

Many researchers focused on a variety of solutions for the issue of sharing resources in mixed criti-
cality systems. Solutions range from bus arbitering (Hassan & Patel, 2016) and bounded interference 
approaches (Nowotsch et al., 2014) for interconnects, to resource servers as dedicated resource managers 
(Brandenburg, 2014) and the isolation of all critical tasks to a higher prioritized core (Ecco, Tobuschat, 
Saidi, & Ernst, 2014).

The authors consider the secure and reliable resource management as one curial aspect of future 
Open CPS platforms. Accordingly, the authors studied how to integrate such management structures 
into the open CPS platform discussed before. For that reason, the Safety Integration Layer (SIL) was 
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developed. The SIL is a pivotal component that ensures a safe behavior of the overall system; it shall 
perform three main actions:

1.  Protect critical platform interfaces/APIs.
2.  Guarantee the overall system integrity and the assured service levels for apps.
3.  Guarantee a reliable real-time behavior for the communication among apps, as well as their resource 

accesses.

Figure 3 illustrates the placement of the SIL and its components with respect to the previously pre-
sented platform for open CPS.

It can be seen that the SIL concept introduces three new components. Beside the Safety Integration 
Layer itself, these are the Integrity Manager and the SIL Client. The Integrity Manager shall ensure that 
all critical apps can access there declared resources at any time without interference by other apps and 
in accordance to their timing requirements. This includes schedulability tests during the deployment of 
new applications, as well as calculating new schedules for the different resources of the platform that 
conform with all requested real-time behaviors of the installed apps. In case no feasible schedule can 
be found the Integrity Manager can also reject an app during the deployment process. The SIL Client, 
on the other hand, extends the control range of the SIL to the non-secure world. As part of the KVM 
hypervisor, the SIL client moderates the resource accesses of the various virtual machines on behalf 
of the SIL. Communication between execution environments in the two worlds, as well as between the 
SIL and its client is done via the cross-world communication interface, which uses the Secure Monitor 
of the ARM TrustZone technology to switch worlds and safely exchange data between the two worlds.

To guarantee the overall system integrity, the assured service levels, and a reliable real-time behaviour, 
the SIL and its client in the KVM hypervisor coordinate the communication and resource accesses of 
all apps with a globally enforced schedule. The Integrity Manager ensures that there is always a feasible 
schedule. Furthermore, the SIL creates isolation domains in hardware and software. On the one hand, it 
partitions the hardware (i.e., memory and interconnects), and on the other hand, it isolates apps in their 
own software fault domain. The latter is done with the help of Software Fault Isolation (SFI) techniques 
(Ruhland, Prehofer, & Horst, 2016). The SFI technology isolates even faulty apps within their own fault 
domain, and specifically controls the utilized instruction set and calls to the underlying platform within 
each app. The SIL then operates on these defined APIs and enforces the requested service levels per app.

Figure 3. Resource management example architecture
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Due to its supervising characteristic and the focus on resource management, as well as communication, 
the authors propose to implement the SIL as an extension to an existing middleware. This middleware 
guarantees real-time constraints for the communication on the platform by globally coordinating bus and 
memory accesses. Additional resource managing components in the SIL are responsible for implement-
ing a globally coordinated schedule on the resources. Thus, each request to a resource is supervised by 
the SIL, either in the sense of a middleware, or a resource arbiter.

SECURE AND TRUSTED CPS NETWORKING

Cyber-security-safety issues are undoubtedly crucial for CPSs since the entities within these systems 
interact not only with each other, but also interact with the environment. CPSs integrate embedded com-
puting devices, physical processes and networks, which makes it necessary to develop safety protection 
mechanisms at multiple layers beyond computing, in order to consider distributed networked devices. 
Modern CPSs today present an increased attack surface, due to its networking and coordination func-
tionalities, due to the integration of larger number of interoperable devices (such as medical devices), 
and most importantly due to increased software components and open-ness (such as modern automo-
biles, vehicle-to-vehicle (V2V) and machine-to-machine (M2M) communication trends) (Weimerskirch, 
2014). Safeguard infrastructures need to detect and subsequently prevent threats and vulnerabilities of 
open CPSs that may cause corruption of sensor and control information and disruption of the physical 
system, or exposure of confidential information. In addition to data security, aggressors may initiate 
attacks that target the real-time properties of a CPS. Real-time accessibility gives a stricter operational 
environment than conventional CPSs.

Major concerns in CPS communication include keeping the data private and allowing only autho-
rized access. Attackers may not only attempt to physically probe the devices, altering their behavior or 
intercepting the physical properties of power consumption and timing behaviors to analyze the secrets 
and masquerade them, but can also implement network intrusion at the physical layer as well as the 
software layer. All relevant safety standards assume that a system’s usage context is completely known 
and understood at development time. This assumption is no longer true for open CPSs, meaning that 
their security vulnerabilities could be faults leading to life-endangering safety hazards. As many CPSs 
are becoming open systems, they are the target of cyber-attacks. Interconnectivity removes boundaries 
and the need for physical presence to gain access. For instance, automotive architectures today include 
features that involve both remote diagnosis and maintenance functionality. Such systems enable Over-
the-Air (OTA) updates and the management of vehicle functions over communication links. As many 
diverse communication networks are integrated, gateways are employed to connect different parts and 
enable functions to obtain needed information from all parts of the vehicle. Since gateways are able to 
access all buses and hence connected devices, updates or remote access functions are mostly supported 
in such components.

Modern vehicles support Wi-Fi, Bluetooth connectivity, many diverse CAN bus systems, dedicated 
networks for advanced driver assistance systems (ADAS) and may connect even up to 100 ECU modules. 
In another domain, the remote medical-support services or tele-assistance systems’ trust of personal de-
vices, as well as, trust in transmitted information are crucial. Multiple dimensions of trust are important, 
such as (i) the safety of using the devices in tele-presence spaces (e.g., safety of blood-pressure devices 
attached to a user or safety of a sensory instrument), (ii) reliable and timely information delivery, (iii) 
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stability of the overall system, (iv) low risk in receiving wrong information, and (v) privacy guarantees. 
Current systems still do not have this level of sophistication, and an appropriate trust configuration 
remains a challenge; especially since the verification and validation of a cyber-physical-system is not 
a one-time event. Instead, intra- and inter- CPS communications to support not only internal connec-
tivity but also over-the-air connectivity, it is essentially a life-cycle process continuously ensuring the 
certification of safety critical services. In addition to trusted platform modules (TPMs) that can be used 
to enable trusted boot, where each piece of code loaded from boot-time is measured via cryptographic 
hash before loading, CPS communications need to be secure, taking measures to ensure trusted commu-
nication from both active (interferers) and passive (eavesdroppers) adversaries. Therefore, to guarantee 
secure and trusted networking in these emerging CPSs, methods are discussed next to address enhanc-
ing network protocols in terms of security and towards designing CPS devices with security in mind. 
Next generation open CPSs framework that we present provides integrated security assurance to allow 
networking self-protection at runtime.

CPS DEVICE-LEVEL SUPPORT FOR DETECTION AND PREVENTION

In addition to ensuring secure communication, modern open CPSs also involve hardware primitives for 
security and authenticating the CPS device itself and mechanism to ensure its own underlying binary 
code is trusted. ARM’s TrustZone Security Extensions discussed by ARM Limited. (2009), enable pro-
cessor and memory isolation effectively creating two distinct “worlds”—the secure world for security 
sensitive application code and the normal world for non-secure applications. Hardware solutions also 
offer support in on-chip networks for logically isolated multi-compartments (Kornaros et al., 2015) and 
hardware monitors for secure embedded devices (Mao and Wolf, 2010), or hardware support for virtual-
ization of I/O devices such as the CAN controller in automotive and extensions that guarantee a spatial 
and temporal isolation of virtual controllers (Herber et al., 2014). To ensure trusted communication, 
proposals include for instance methods of integrating physically unclonable functions (PUFs) (A PUF 
is a complex physical system with a large number of inputs and outputs, where the mapping from the 
inputs to the outputs cannot be predicted in any reasonable time, and the system cannot be reproduced 
due to scientific or technological difficulties) along with existing hardware in the design to create a 
trusted information flow within the system (Potkonjak et al., 2010). Digital PUFs have been designed for 
enabling remote secret key exchange protocol and communication tasks, because both communicating 
parties experience very low overhead in terms of both time and energy.

Finally, software methodologies can provide enhanced security in deeply embedded real-time CPS 
systems. Various methods employ application instrumentation to detect anomalies, such as timing dila-
tions exceeding worst-case execution time (WCET) bounds in order to attain elevated security assurance. 
Static timing analysis is performed on selected code sections to obtain bounds during the right timing 
for the required schedulability analysis, and the bounds are subsequently utilized to monitor execution 
during run-time (Zimmer et al., 2015). Intrusion Detection Systems (IDS) are also widely deployed to 
detect unwanted entities into a system by using signature-based, specification- based, or anomaly-based 
techniques. To achieve vehicular bus communication security authentication of all senders in the gate-
ways, encryption of data transmissions and network firewalling are fundamental techniques (Kleberger 
et al., 2011).
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Existing techniques for securing CPS networking have various drawbacks, especially in broadcast and 
distributed systems with limited computing power and data storage. However, the vast majority of cyber-
attacks can be prevented through optimizing communication standards, incorporating hardware security 
attributes in device designs, upgrading firmware to support trusted root of trust, etc. By considering the 
implications of intercepted, deleted, modified and forged information from all components of a networked 
CPS, designers increasingly need to employ methods relying on communication security-by-design and 
integrated security assurance to protect the system end-to-end against such attacks.

NETWORK-LEVEL SUPPORT DETECTION AND PREVENTION

The networking of gateways, switches, and firewalls components for wired, wireless and sensor networks 
in CPSs should ensure routing security, traffic control on information flow, and the necessary network 
separation (demilitarized zones (DMZs). Moreover, in order to fulfill authentication requirements, 
developers propose more efficient schemes during the design or upgrade of communication protocols 
(Wang et al, 2009). A CPS network protocol should ensure that a transmitted message is authentic and 
determine if the integrity of the message has been compromised. An authentic message indicates that 
the device alleged to be the sender of the message is actually the device that sent the message. Message 
integrity denotes that the contents of the message received by a recipient device have not been altered 
after having been sent from the alleged sender. Cyber threats can involve forging communication mes-
sages that appear to be from a trusted sender, but that are not actually from the sender, or eavesdropping 
on legitimate messages from the sender and attempt to spoof the receiver with copies of the legitimate 
messages. Detection and prevention protocols must prevent the attacker from convincing the recipient 
that the message is from a trusted device or that the contents of a copied message can be trusted.

Previous works employ behavior-based techniques for intrusion detection (Sun et al., 2008), optionally 
using domain-specific knowledge and are often targeted at wireless communication. Protocol extensions 
towards intrusion prevention protocol can utilize different key establishment with regard to the cases of 
deployment of networks and establishes different types of keys according to the role of a sensor node. 
The prevention protocol also enables to encrypt a message selectively or to append a message authenti-
cation code to its related critical proprietary information of CPSs applications.

Gateways, switches, firewalls and components are critical for cyber-security, as they can contribute 
to the necessary network separation. The networking of these components for wired, wireless and sensor 
networks should ensure routing security and improved resiliency against cross-layer traffic injection as 
specified by National Institute of Standards and Technology (2014). In modern and future vehicles for 
example, to address increasing complexity due to the large number of Electronic Control Units (ECUs) 
and their software code, a promising solution is domain-based networking. In such a set-up, a domain 
controller isolates a number of devices (cost reduced “light” ECU) using for instance standardized Software 
(AUTOSAR). From a threat perspective, communication segmentation both on-chip and off-chip allows 
better visibility, management and isolation. Essentially, as Figure 4 shows an automotive example, the 
division of the network into security zones advances monitoring of internal traffic and devices, prevents 
unauthorized access to restricted data and resources, and controls the spread of intruders and malware, 
as well as error propagation.

To tackle secure networking of an open CPS the developed secure framework provides co-operative 
dynamic firewalling between internal and external communications through the gateway components. 
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The gateway creates secure isolated on-device compartments and in-system secure network segments 
through embedding integrity and authentication control for each data transfer. At the same time the 
root-of-trust boot protocol is extended with one-time-programmable on-chip routing paths and access 
control rules. The developed framework enables a physical communication link among CPS devices to 
essentially support a secure physically separate channel and a non-secure physically separate channel 
that conveys untrusted data.

In addition, the distributed approach employed involves the use of a challenge response system for 
authentication between the gateway node and each transmission node (ECU). Hence, considering a robust 
open CPS, the gateway controls not only detachable devices that connect to the system, for instance such 
as through an OBD port, but additionally the gateway performs periodic sanity checks to ensure trusted 
communication with low-overhead, e.g., in CAN-based systems that require real-time data processing.

SECURE AND TRUSTED INTER-EE AND INTER-APP COMMUNICATION

In Section “Execution Environments and Apps Platform” the concept of EE has been detailed as isolated 
context of execution, characterized by a level of criticality. However, as pointed out by the requirement 
(i), such an isolation should not to prevent them from communicating with each other.

The information sharing between heterogeneous contexts of execution is one of the key feature to 
implement functional and full featured CPS systems. However, the trustworthiness of this communica-
tion, both between apps running on the same execution environment (Inter-App) and running on differ-
ence execution environments (Inter-EE), is of pivotal importance for the safety and security of the entire 
architecture. For this reason, the techniques that are used by apps to communicate need to be supervised 
by software, as well as by hardware. In the remaining part of this section, a review of the available tech-
niques that allow communication between applications, virtual machines and, more generally, execution 
environments will be given, proposing as well ideas for novel approaches.

The communication between Virtual Machines is a topic that has been vastly explored in the past, 
since it introduced room for improving the canonical communication based on physical network cards 

Figure 4. Example of an automotive networked CPS with various Electronic Control Units (ECUs) sup-
porting segmented on- and off-chip networks. Firewalling mechanisms located at each domain bridge 
enable isolation and authenticated communication.
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and physical switches. The emerging paradigm of Software Defined Network (SDN) and the subsequent 
creation of the Network Function Virtualization (NFV), made this interest even stronger. The concept of 
NFV is about decoupling the software implementation of network functions from the underlying hard-
ware (Azodolmolky et al., 2013), confining the former in Virtual Machines. All this attention allowed 
to burst significantly the development towards highly efficient and fast solutions aimed at switching 
network packages between Virtual Machines. Relaying on the Linux subsystems, it was already possible 
to implement decent switching mechanisms between VMs’ network interfaces. In fact, assigning one 
TAP device to every VM it is possible to benefit from the in-kernel packet switching, technique which 
is normally used when Linux serves as a router/switch OS. This is not an ideal solution in the context 
of virtualization, since the handling of incoming/outgoing packets require expensive exits from the VM 
which will eventually bring the execution to kernel space, where the actual packet switching happens. 
The packets passing though the in-kernel switching modules can be, therefore, filtered by Linux modules 
such as netfilter, the Linux packets filtering solution. This, together with iptables, offers a full-featured 
firewall solution. Other types of packets analysis (e.g.: packets inspection) are difficult to achieve in 
these situations from a regular user space application for security reasons.

Avoiding the commutation to kernel mode during the packet switching would bring performance and 
latency improvements; this is the starting point of several virtual switches that have been implemented in 
the past and that are still heavily used as virtual functions. Example of virtual switches are VOSYSwitch 
(Paolino et al., 2016), Snabb, VALE (Rizzo et al., 2012) and OVS-DPDK: all these solutions implement 
in user space the switching functionality, reducing the costs associated to virtualization, requiring less 
context switches. Flexibility-wise, these solutions are much more convenient than the in-kernel solutions: 
project like VOSYSwitch provides the API and the needed infrastructure to enrich the virtual switch with 
plug-ins, it also provides extended functionalities like virtual LANs, firewall, packets inspection and so 
on. Such a flexibility finds application in the CPS architecture, enforcing security policies between VMs.

The virtual switches, although being ideal solutions as communication between VMs (and so to 
non-safety-critical execution environments), do not address the communication between an execution 
environment in the Normal-world, and the RTOS (or safety-critical execution environment). The hard-
ware partitioning of the two worlds makes impossible to use conventional communications methods: 

Figure 5. Communication scheme between Execution Environments: Inter-EE refers to the communica-
tion between the Safety-critical execution environments and the others. The communication between the 
non-safety-critical execution environments is represented by the Virtual Switch interconnection.
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the link between a process running on the Secure world and the Normal world requires an ad-hoc solu-
tion. Offering the insights for such a solution is the GlobalPlatform (https://www.globalplatform.org/
specifications.asp) program, which aims at standardize the interoperation between multiple applications 
on secure chips. Specifically, the GlobalPlatform API were designed to standardize the communication 
protocol between these applications, called the Trusted Applications (TA), and the user (client applica-
tions running in the Non-secure side). The Secure side, according to the GlobalPlatform naming, is called 
Trusted Execution Environment (TEE). These API suit particularly well the Open CPS use case, giving 
a ready-to-use design for the cross-worlds communication. Every application which wants to initiate a 
trusted communication with a TA, has to first initialize the context of execution with the desired service 
running in the TEE (TEE Server). Such a context provides all the necessary resources to properly ex-
ecute the TA, configuring for instance the shared memory between the two processes if needed. Figure 
4 depicts the overall scheme of communication between execution environments.

GlobalPlatform does not address only the communication part, but also covers the characterization 
of the applications running on the Secure side as well as their properties. This gives valuable guidelines 
for the development of the Secure eservices.

Overall, GlobalPlatform offers the technology to exploit the ARMv8 TrustZone extension towards 
secure communication between execution environments, ensuring the integrity of the Secure services 
and the confidentiality of the Secure assets.

Other solutions have been explored that, relying on TrustZone, provide a framework to implement a 
secure communication channels between the TEE and the Normal world. Jang et al. (2015) presented a 
framework which, although not following the GlobalPlatform design, provides a mechanism of secure 
sessions, where the TEE provides the session key to the requestor only if its code and control flow have 
been successfully verified.

The secure provision of a key to a process running in the Non-secure side introduces powerful pos-
sibilities, like the initialization of a crypted channel between non-safety critical processes running in the 
same or different execution environments. In this case, it is of fundamental importance that the session 
key is treated with the due measures to not jeopardize the security of the system. In fact, an improper 
handling of such keys can greatly extend the attack surface for malicious software (like, for instance, 
copying the key to non-secure memory).

MODEL-BASED TOOLCHAIN

Provision of an open platform should go in pair with the specification of an approach for developing 
applications and/or recommendations of tools that can be used to develop applications intended to run 
on such platform. This is stated by one of the requirements mentioned in the “Open CPS Requirements” 
section, i.e. vi). Most common and a natural choice is a usage of programming languages, such as C 
or C++. The fact that these are the languages well known among the software engineers increases the 
chances of building potentially large community of developers. Indeed, the last is one of the most im-
portant objectives of open platform hence technologies which are advertised should be well recognized. 
Nevertheless, in the area of CPS development, there is a trend of going towards model based design 
(MBD) that supports the construction of abstract models and the transformation into concrete imple-
mentations. MBD is a further step in the direction of increasing the abstraction levels in the development 
process, offering more high-level, reusable and maintainable software components, with a main goal to 
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speed up an entire development process, improving at the same time overall software quality as models 
might be a subject to formal analysis. Evaluation of properties through formal checks has a meaningful 
impact on the security and safety, therefore it relevantly contributes to the main concern of open CPS 
platforms. At the code level, software quality can be improved by unit testing, complex integration 
process and checks or usage of a coding standards. These are the ways to proceed when delivering the 
code supposed to provide certain level of quality. When moving with the development to the model-
ing level, additional techniques, such as model checking can be employed to check that formal defined 
properties of a model hold. Consequently, it is of a high interest to have a toolchain which incorporates 
support for programming but also exceeds the functionality of an ordinary, programming tool with the 
model-based design in which models are not just an artefact for code generation but also an input for 
verification via model checking.

The approach presented in this chapter tries to respond to such demand by providing a toolchain in 
which trusted apps can be developed and packaged using standard ARM toolchain and posted in the 
container, whereas critical apps can either be written entirely in native languages, i.e. C/C++, or can be 
modeled using tools such as 4DIAC modeling tool (4DIAC, Eclipse Incubation Project, 2016). 4DIAC is 
an IEC 61499 (IEC 61499, 2015) compliant integrated development environment (IDE) that provides an 
engineering environment to model distributed control applications. The development approach in 4DIAC 
follows the application centric design approaches as of IEC 61499 based systems. Overall systems are 
created by modeling the required applications. Out of the 4DIAC model machine deployable C code can 
be then generated. Thus, there are three basic ways in which apps can be deployed in the app container, 
all summarized in the Figure 6. The app container itself apart from the App Binary might include as 

Figure 6. Components of apps verification and development toolchain
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well the App Manifest. The last might be for instance formatted in JSON, and for critical apps it can 
store special, additional information such as:

• Signed certificate, which was created by an entity that can guarantee the safety of the app. 
Consequently, only certified apps may be permitted to run within the Critical Execution 
Environment (CEE) which eliminates situations in which end user downloads faulty or malicious 
software.

• Resources required by the app, for example memory, exclusive hardware access and required 
permanent space.

• Application manifest with Plug & Play information.

Having such information, the toolchain should be able to limit and analyze the features of an app, 
even before deployment and on the source level, without having to disclose the source code.

Furthermore, to ensure higher level of trust, security and safe operation, critical apps developed using 
a modeling tool can be verified if they are conforming to the platform API requirements and constraints. 
For instance, an app behavior in 4DIAC is specified using asynchronously interacting state-machines. 
Given a finite model of an application, it is now possible to systematically check if a formal property 
holds for the model, by using model checking technique. Example of a property that could be model 
checked for a vehicle app responsible for cruise control (CC) functionality, is that it will never operate 
for the vehicle speed lower than 15km/h. For that an existing model checking tool can be integrated. For 
example, NuSMV(Cimatti et al., 2002) has an open architecture for model checking and is reliable to be 
used in verifying industrial designs. The NUSMV project aims at the development of a state-of-the-art 
symbolic model checker, designed to be applicable in technology transfer projects: it is a well-structured, 
open, flexible and documented platform for model checking, and is robust and close to industrial sys-
tems standards. Seamless integration of the NuSMV checker can be done through the generation of the 
NuSMV input language (Cimatti & Roveri, 1998) (which is essentially the same as the CMU SMV input 
language (Clarke, McMillan, Campos, & Hartonas-Garmhausen, 1996)) out of the 4DIAC model (as 
shown on the Figure 6) or any other kind of modeling language used or tailored for designing CPS ap-
plications. Therefore, only apps modeled with 4DIAC can be verified. The results of the model checker 
are then bound with the app binary as a manifest of the application container.

Provision of mentioned features (e.g. support for formal verification) within the toolchain adds to 
the desire of securing the operation of apps within the open CPS platform context. There are however 
further ways in which the toolchain will support that concept. Guidelines for verification of a common 
security threats might be one of them.

SUMMARY AND FUTURE DIRECTIONS

The market of open CPSs is rapidly growing and evolving and at the same time security and trust are 
getting more and more important. Although many standard IT security concepts can be applied to open 
CPSs, dynamic, run-time update of critical devices should be considered explicitly in the deployment of 
open systems, while addressing security concerns for such devices at the same time. Open cyber-physical 
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systems are becoming susceptible to a wider range of attacks and need to build resiliency against system 
compromise. The open CPS paradigm as an ensemble of diverse software-dominated components that 
involve feature interaction, multi-rate distributed networked subsystems, and collaborative control, re-
quires synergistic mechanisms across hardware and software layers to ensure security. Design approaches 
that enable correct by construction mechanisms are important in safety-critical networked components, 
much like the challenge of making formal methods accessible to aid in establishing a next-generation 
certification process. In open CPSs it is not enough simply to add security features on to the system at 
some later point in time. Strategies relating to safety, and in particular security of CPS apps platform, 
need to be designed into the system from the outset.

The main domains – aerospace, automotive, healthcare, industrial automation – are analyzing and 
providing hardware and software-based technologies for addressing these security issues in their areas. 
But the whole CPS industry would benefit from more general domain-independent platforms and devel-
opment processes, which would allow for building industrial devices and developing software services 
with security requirements in mind from the first step on. For example, introducing verification and 
model-driven development techniques such as those outlined in the previous section, in order to detect the 
possibility of an execution of unauthorized instructions in real-time CPS environments. By introducing 
early warning systems should raise intrusion detection capabilities but also might provide several steps 
of reduced functionality (Zimmer, Bhat, Mueller, & Mohan, 2015).

Security professionals will play a large role in the development process of open CPSs evaluating risks 
for organizations and deciding about solutions and tools to be applied in each individual case. Security 
vendors and cyber physical system vendors should cooperate for a better detection of threats and mitiga-
tion of successful attacks. Lessons learned in other industries such as personal computers, tablets and 
smartphones producers should be analyzed and applied in the CPS area alike to build software security 
on top of hardware security modules and secure communication. CPS features like real-time, distributed 
components and loss of physical devices should not provide any leak to attackers. But this is not enough, 
security of CPS needs to be built into the design of the system itself (Moholkar, 2014).

ACKNOWLEDGMENT

The research leading to these results has received funding from the European Union (EU) Horizon 2020 
project TAPPS (Trusted Apps for open CPSs) under RIA grant n° 645119.



321

Secure and Trusted Open CPS Platforms
 

REFERENCES

4DIAC, Eclipse Incubation Project. (2016). Retrieved from https://eclipse.org/4diac

Anderson, J., Baruah, S., & Brandenburg, B. (2009). Multicore operating-system support for mixed 
criticality. In Proceedings of the workshop on mixed criticality: Roadmap to evolving UAV certification. 
San Francisco, CA, USA.

Azodolmolky, S., Wieder, P., & Yahyapour, R. (2013). Cloud computing networking: Challenges 
and opportunities for innovations. IEEE Communications Magazine, 51(7), 54–62. doi:10.1109/
MCOM.2013.6553678

Brandenburg, B. B. (2014, December). A synchronous IPC protocol for predictable access to shared 
resources in mixed-criticality systems. In Proceedings of the IEEE real-time systems symposium (pp. 
196–206). doi:10.1109/RTSS.2014.37

Burns, A. J., Johnson, M. E., & Honeyman, P. (2016, October). A brief chronology of medical device 
security. Communications of the ACM, 59(10), 66–72. doi:10.1145/2890488

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., . . . Tacchella, A. (2002, 
July). NuSMV 2: An opensource tool for symbolic model checking. In E. Brinksma & K. G. Larsen 
(Eds.), Computer aided verification: 14th international conference, Proceedings (pp. 359–364). Berlin, 
Heidelberg: Springer Berlin Heidelberg.

Cimatti, A., & Roveri, M. (1998, December). NuSMV 1.0: User manual (Tech. Rep. Nos. Technical 
report, ITC-IRST, Trento, Italy.)

Clarke, E., McMillan, K., Campos, S., & Hartonas-Garmhausen, V. (1996). Symbolic model checking. 
In R. Alur & T. A. Henzinger (Eds.), Computer aided verification (pp. 419–422). Berlin, Heidelberg: 
Springer Berlin Heidelberg. doi:10.1007/3-540-61474-5_93

Ecco, L., Tobuschat, S., Saidi, S., & Ernst, R. (2014, August). A mixed critical memory controller 
using bank privatization and fixed priority scheduling. In Proceedings of the IEEE 20th international 
conference on embedded and real-time computing systems and applications (pp. 1–10). doi:10.1109/
RTCSA.2014.6910550

Hassan, M., & Patel, H. (2016, April). Criticality- and requirement-aware bus arbitration for multi-core 
mixed criticality systems. In IEEE real-time and embedded technology and applications symposium (pp. 
1–11). RTAS. doi:10.1109/RTAS.2016.7461327

Herber, C., Richter, A., Rauchfuss, H., & Herkersdorf, A. (2014, September). Spatial and temporal isola-
tion of virtual CAN controllers. SIGBED Rev., 11(2), 19–26. doi:10.1145/2668138.2668141

IEC 61499. (2015). Retrieved from http://www.iec61499.de/

Jacobs, M. (2013). Improving the precision of approximations in WCET analysis for multi-core proces-
sors. In Proceedings of the 7th junior researcher workshop on real-time computing (pp. 1–4).



322

Secure and Trusted Open CPS Platforms
 

Jang, J. S., Kong, S., Kim, M., Kim, D., & Kang, B. B. (2015). SeCReT: Secure channel between rich 
execution environment and trusted execution environment. In NDSS.

Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the internet of things: Perspec-
tives and challenges. Wireless Networks, 20(8), 2481–2501. doi:10.1007/s11276-014-0761-7

Khaitan, S. K., & McCalley, J. D. (2015, June). Design techniques and applications of cyberphysical 
systems: A survey. IEEE Systems Journal, 9(2), 350–365. doi:10.1109/JSYST.2014.2322503

Kivity, A., Laor, D., Costa, G., Enberg, P., Har’El, N., Marti, D., & Zolotarov, V. (2014). OSv—optimizing 
the operating system for virtual machines. In Proceedings of the USENIX annual technical conference 
(USENIX ATC) (pp. 61–72).

Kleberger, P., Olovsson, T., & Jonsson, E. (2011, June). Security aspects of the in-vehicle network 
in the connected car. In Proceedings of the IEEE intelligent vehicles symposium (IV) (pp. 528–533). 
doi:10.1109/IVS.2011.5940525

Kornaros, G., Christoforakis, I., Tomoutzoglou, O., Bakoyiannis, D., Vazakopoulou, K., Grammatikakis, 
M., & Papagrigoriou, A. (2015, August). Hardware support for cost-effective system-level protection 
in multi-core SoCs. In Proceedings of the Euromicro conference on digital system design (pp. 41–48). 
doi:10.1109/DSD.2015.65

Kotaba, O., Nowotsch, J., Paulitsch, M., Petters, S. M., & Theiling, H. (2013). Muticore in real-time 
systems - temporal isolation challenges due to shared resources. In Proceedings of the workshop on 
industry-driven approaches for cost-effective certification of safety-critical, mixed-criticality systems 
(WICERT).

ARM Limited. (2009, April). ARM security technology: Building a secure system using TrustZone 
technology (tech. report No. PRD29-GENC-009492C). 

Macdonell, C., Ke, X., Gordon, A. W., & Lu, P. (2011). Low-latency, high-bandwidth use cases for 
nahanni/ivshmem. In Proceedings of the Kvm forum (Vol. 2011).

Mao, S., & Wolf, T. (2010, June). Hardware support for secure processing in embedded systems. IEEE 
Transactions on Computers, 59(6), 847–854. doi:10.1109/TC.2010.32

Moholkar, A. V. (2014, July). Security for cyber-physical systems. International Journal of Computing 
and Technology, 1(6).

Mollison, M. S., Erickson, J. P., Anderson, J. H., Baruah, S. K., & Scoredos, J. A. (2010, June). Mixed-
criticality real-time scheduling for multicore systems. In Proceedings of the 10th IEEE international 
conference on computer and information technology (pp. 1864–1871). doi:10.1109/CIT.2010.320

Mushtaq, H., Al-Ars, Z., & Bertels, K. (2013, December). Accurate and efficient identification of worst-
case execution time for multicore processors: A survey. In Proceedings of the 8th IEEE design and test 
symposium (pp. 1–6). doi:10.1109/IDT.2013.6727080



323

Secure and Trusted Open CPS Platforms
 

Nowotsch, J., Paulitsch, M., Bühler, D., Theiling, H., Wegener, S., & Schmidt, M. (2014, July). Multi-core 
interference-sensitive WCET analysis leveraging runtime resource capacity enforcement. In Proceed-
ings of the 26th euromicro conference on real-time systems (pp. 109–118). doi:10.1109/ECRTS.2014.20

Panel, S. G. I. (2010). Guidelines for smart grid cyber security (tech. report No. 7628). Cyber Security 
Working Group. NIST.

Paolino, M., Fanguede, J., Nikolaev, N., & Raho, D. (2016). Turning an open source project into a carrier 
grade vSwitch, for NFV: VOSYSwitch challenges & results. In Proceedings of the 5th IEEE international 
conference on network infrastructure and digital content (NIDC).

Pellizzoni, R., Meredith, P., Nam, M.-Y., Sun, M., Caccamo, M., & Sha, L. (2009). Handling mixed-
criticality in SoC-based real-time embedded systems. In Proceedings of the 7th ACM international 
conference on embedded software (pp. 235–244). New York, NY: ACM. doi:10.1145/1629335.1629367

Potkonjak, M., Meguerdichian, S., & Wong, J. L. (2010, November). Trusted sensors and remote sens-
ing. In IEEE Sensors (pp. 1104–1107).

Prehofer, C., Horst, O., Dodi, R., Geven, A., Kornaros, G., Montanari, E., & Paolino, M. (2016). 
Towards trusted apps platforms for open CPS. In Proceedings of the 3rd international workshop on 
emerging ideas and trends in engineering of cyber-physical systems (EITEC) (pp. 23–28). doi:10.1109/
EITEC.2016.7503692

Prehofer, C., Kornaros, G., & Paolino, M. (2015). TAPPS - trusted apps for open cyber-physical systems. 
In S.K. Katsikas & A.B. Sideridis (Eds.), E-democracy – citizen rights in the world of the new computing 
paradigms (pp. 213–216). Cham: Springer International Publishing.

Richter, A., Herber, C., Rauchfuss, H., Wild, T., & Herkersdorf, A. (2014, February). Performance iso-
lation exposure in virtualized platforms with PCI passthrough I/O sharing. In E. Maehle, K. Römer, W. 
Karl et al. (Eds.), Architecture of computing systems – ARCS 2014 (pp. 171–182). Lübeck, Germany: 
Springer International Publishing.

Rizzo, L., & Lettieri, G. (2012). Vale, a switched Ethernet for virtual machines. In Proceedings of 
the 8th international conference on emerging networking experiments and technologies (pp. 61–72). 
doi:10.1145/2413176.2413185

Ruhland, A., Prehofer, C., & Horst, O. (2016, December). embSFI: An approach for software fault 
isolation in embedded systems. In M. Völp, P. Esteves-Verissimo, A. Casimiro, & R. Pellizzoni (Eds.), 
Proceedings of the 1st workshop on security and dependability of critical embedded real-time systems, 
Porto, Portugal (pp. 6–11). Retrieved from https://certs2016.uni.lu/Media/certs2016.uni.lu/Files/CERTS-
2016-Ruhland-embSFI

Russell, R. (2008). virtio: Towards a de-facto standard for virtual I/O devices. Operating Systems Review, 
42(5), 95–103. doi:10.1145/1400097.1400108

Sha, L. (2009, September). Resilient mixed-criticality systems. Crosstalk, 22(9-10), 9–14.



324

Secure and Trusted Open CPS Platforms
 

Stankovic, J. A. (2014, February). Research directions for the internet of things. IEEE Internet of Things 
Journal, 1(1), 3–9. doi:10.1109/JIOT.2014.2312291

Sun, Y., Han, Z., & Liu, K. J. R. (2008, February). Defense of trust management vulnerabilities in dis-
tributed networks. IEEE Communications Magazine, 46(2), 112–119. doi:10.1109/MCOM.2008.4473092

Wan, J., Zhang, D., Zhao, S., Yang, L. T., & Lloret, J. (2014, August). Context-aware vehicular cyber-
physical systems with cloud support: Architecture, challenges, and solutions. IEEE Communications 
Magazine, 52(8), 106–113. doi:10.1109/MCOM.2014.6871677

Wang, Q., Khurana, H., Huang, Y., & Nahrstedt, K. (2009, April). Time valid one-time signature for 
time-critical multicast data authentication. In IEEE INFOCOM (pp. 1233–1241). doi:10.1109/IN-
FCOM.2009.5062037

Weimerskirch, A. (2014). V2V communication security: A privacy preserving design for 300 million 
vehicles. In Proceedings of the workshop on cryptographic hardware and embedded systems (CHES), 
Busan, Korea.

Zimmer, C., Bhat, B., Mueller, F., & Mohan, S. (2015). Intrusion detection for CPS real-time controllers. 
In S. K. Khaitan, J. D. McCalley, & C. C. Liu (Eds.), Cyber physical systems approach to smart electric 
power grid (pp. 329–358). Berlin, Heidelberg: Springer.


