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Abstract-As recent heterogeneous system designs integrate 
general purpose processors, GPUs, and other specialized accel
erator devices into a single platform to provide both power and 
performance benefits, it is important to support efficient dispatch
ing mechanisms in terms of performance and programmability. 
This work proposes models for integrating hardware accelerators 
with applications executing under standard operating systems 
on an embedded processor. Instead of using direct mapping of 
accelerator units to user applications, or using legacy drivers 
that incur communication overheads and large programming 
effort, we develop an abstraction layer in kernel driver which 
driver communicates with a custom dispatcher to interface a 
number of hardware accelerators. At the same time we remove 
the need to include IOMMUs for virtual-to-physical translation 
from the device side, and the need to perform copies from 
user to kernel space when offtoading computational instensive 
tasks to the accelerators. We demonstrate the effectiveness of 
our solutions running real applications on a prototype hybrid 
heterogeneous System-on-Chip platform. 

Index Tenns-Heterogeneous SoC, Accelerator Dispatcher, 
Processor-Accelerator Unified Address Space, IOMMU-free on
chip Communication. 

I. INTRODUCTION 

As general-purpose computing effectively takes advantage 
of throughput-oriented processing components, such as Graph
ics Processing Units (GPUs), different techniques emerge to 

amortize heterogeneity in terms of architectural differences 
and programmability. Multiple processing units with their own 
memory may incur potentially penalty to access the data if 
these are not in close proximity, especially if they reside 

in a different address space. To tackle this challenge fused 

architectures, that is multi-core CPUs and many-core GPUs 
are integrated on a single chip with a shared on-chip L3 
cache, to produce what AMD calls accelerated processing units 

(APUs) [1], providing the opportunity to leverage the high 
computational power of the GPUs. In addition, inspired by 

these architectures Heterogeneous System Architecture (HSA) 
Foundation [2] proposes a unified virtual address space and 

coherent shared memory spanning the APU, enabling user
level task queues in order to reduce offloading latency. 

Today, in heterogeneous architectures, computational inten
sive tasks, commonly called kernels must be launched via a 

run-time system through a device driver to the co-processor, 
and an execution context is created within the co-processor 

prior to execution. The co-processor commonly use a ded

icated system memory partition where the data must reside 
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and the co-processor also provides a dedicated fast memory 

unit and DMA engine. Thus, co-processors programming has 

both memory data setup and program setup overhead through 

the run-time system, and unless several kernels are executed 
sequentially in the co-processors to hide the overhead, the 
setup and tear down overhead for a single kernel can exceed 
any benefit gain via the co-processor. In the scope of HSA 

memory architecture an offload operation is simplified by 

passing virtual memory pointers to shared data from the host to 
the accelerator, in the same way that shared memory parallel 
programs pass pointers between threads running on a CPU. 

Even though this increases programmability and compiler 

implementations for offloading process, it asks for support 
of dedicated hardware blocks such as Input/Output Memory 

Management Units (IOMMUs) to allow the accelerator to 
handle addresses in paged virtual memory [3]. 

Moreover, as acceleration devices execute outside the pro

cessor, they usually lack access to processor's virtual address 

space and invoking the accelerator may require pinning data 

in memory and translating virtual addresses in advance of 
launching the accelerated computation. Researchers have pro
posed single CPU thread to assist in prefetching data for 

many GPU threads [4] or channels, i.e. multi-producer/multi

consumer data queues that aggregate fine-grain work items 
before scheduling to the GPUs [5]. In this work we address the 
challenge to make the data available in an efficient way in the 
address space of a co-processor while minimizing unnecessary 

time to transfer data and virtual-to-physical translations. 
In addition, system software must be heterogeneity-aware in 

order to leverage the power-efficiency of heterogeneous sys
tems [6]. Researchers propose heterogeneity-aware scheduling 

algorithms in a hypervisor and resource partitioning to allow 
scalability, or disengagement of scheduling extensions from 
the OS scheduler. In a direction similar to Beisel et al.,[7] the 
scheduling principles are hidden from the application devel
oper and thus the OS can perform global decisions based on 

the system utilization. Application-specific scheduling inputs 
still have to be provided by the application developer to in

corporate applications needs. As they use a hybrid userlkernel 

level approach to perform heterogeneous scheduling, we also 

have a hybrid scheduling mechanism near the accelerator 
processing engines that provides a unified general-purpose 
interface to the system OS and applications. 

The main contributions of this work are summarized next. 



• An architecture to integrate multiple fine-grain asymmet

ric accelerators with a common unifying interface. 
• An efficient accelerator interface that allows the de

veloped kernel driver (i) to interact and configure this 

interface/dispatcher, (ii) to supply multiple jobs to a run
time programmable number of buffers, thus isolating and 

decoupling from the particular accelerators functionality 
and operation rate. These buffers reside in a scratchpad 
memory which is tightly coupled with the accelerators in 
order to overlap communication with processing time. 

• Disengagement of the completion phase from the launch 

phase for an offload operation instead of the common 
binding of the user application to the accelerator driver 

for the lifetime of the offloading processes. 

The rest of the paper is organized as follows. Section II 
presents related work. Section III describes our framework 

and and its implementation on our evaluation platform, while 
section IV analyzes the hardware-software interface. Section V 

provides the description of our optimized solution and finally 

Section VI concludes the paper. 

II. RELATED WORK 

Fixed-function accelerators commonly use scratchpad mem
ories and DMA engines or caches. Cache-based memory 

hierarchy is inefficient for bulk data movement in 110 bound 
applications, but can be more efficient at on-demand, fine
grained data transfer for applications, and depending on the ap

plications memory access patterns [8]. In industry, IBM intro
duced the Coherent Accelerator Processor Interface (CAPI) on 

POWER8 systems to provide a high-performance solution for 

implementing client-specific computation-heavy algorithms on 

FPGAs [9]. On top, the Multi Accelerator Platform Engine for 
Baseband (MAPLE-B) consists of a programmable-system
interface (PSIF) that is a programmable controller with DMA 

capabilities and signal-processing accelerators attached using 

an internal interface [10] [11]. Intel's open approach to FSB
coupled accelerators proposes the QuickAssist Technology Ac
celerator Abstraction Layer to simplify the use and deployment 

of tightly-coupled accelerators [12] [13]. By using a reduced 
functionality or "bare-bone" API, named dataplane API, or 
by batching requests, Intel aims to reduce offload latency. 

Automatically managing data and optimizing communica

tion has been addressed in the context of CPU-GPU data 
management through using compiler-assisted techniques to 
transfer data to the appropriate memory space [14][15]. In the 

StarPU runtime [16], applications submit computational tasks, 
forming a task graph, with CPU and/or GPU implementations, 

and StarPU schedules these tasks and associated data transfers 
on available CPUs and GPUs. StarPU optimizes data transfers 
using prefetching and overlapping. In the same scope semi

automatic techniques, such as Global Memory for Acceler
ators (GMAC) require programmers to add annotations [17]. 

Unified virtual addressing [18] (UVA) abstracts away from the 
programmer the actual location of data, whether on any of the 

GPUs or on the CPU. On top we propose methods to eliminate 

time-consuming operations in cases that can be avoided, such 
as in small or fine-grain data transfers. 

In order to tackle offloading overheads, researchers have 
also proposed dynamically aggregating asynchronously pro

duced fine-grain work into coarser-grain tasks leveraging the 
GPU's control processor to manage those queues [5]. Op

tionally, engineers develop hardware-assisted direct memory 
access (DMA) and the 110 read and- write access methods 
along with on-chip microcontrollers inside the GPU to offer 

effective solutions in terms of reducing the data transfer 
latency for concurrent data streams [19]; Fujii et al. [19] 

showed that direct 110 operations are faster than using DMA 
controllers for small data transfers. 

III. EMBEDDING TIGHTLY-COUPLED HARDWARE 

ACCELERATORS 

The biggest constraint for a system extended with accelera
tor coprocessors is the requirement for the CPU to coordinate 

transfers of data and commands between the host and each 
co-processor's local memory. To avoid wasting performance 

on unnecessary coordination tasks one option is tightly cou
pling through instruction customization, such as NEON SIMD 
extensions for ARM processors. On the other hand though, 

customized hardware peripherals can easily offer domain
specific acceleration, with different organizations, hierarchical 

or parallel. We opted for interfacing with hardware fixed- or 
programmable accelerators while providing a unifying and low 

overhead programming API. While the integrated hardware 

SIMD pipelines offer significant performance improvements 

also by removing the need to copy data to a specialized 

accelerator, still, they can be outperformed by a customized 

hardware accelerator. We use an evaluation platform based on 

the Xilinx Zynq-7000 all Programmable SoC [20]. As shown 
in figure 1, the two NEON pipelines can be the bottleneck 
when multiple instances are launched on the processors. The 

equivalent instructions per clock cycle (IPC) for matrix mul
tiplication reaches 1.4, while when offloading to an optimized 
hardware matrix multiplicator the average IPC is 3.44. We 
used the hardware performance counters to collect the number 
of hardware instructions that are executed in the ARM Cortex 

A9 CPU and we scaled the clock cycles that are needed by 
the hardware accelerator in the FPGA to match the frequency 
of the CPU processing system. 

Scratchpad-based memory systems are currently the pre
dominant memory system organization used by fixed-function 
accelerators. Each accelerator's local scratchpad is usually 
only visible to its own datapath. Figure 2 shows the organi

zation of a system that integrates a number of fixed-function 

hardware accelerators, potentially heterogeneous ones. These 
accelerator processing units are non-preemptive. All hardware 
accelerators are controlled by a single dispatcher that is 

responsible to supply the parameters for launching one job and 

communicate with the system CPU. The dispatcher abstracts 
the diversity of the functionality of these custom accelerators 

by presenting a single general-purpose API to the host CPU 

and encapsulating the accelerators details. The dispatcher and 
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Fig. 1. Matrix multiplication for different matrix sizes using the NEON 
SIMD extensions on an ARM A9 processor, for a single and ten simultaneous 
launches 

the CPU communicate through a shared scratchpad memory 
that stores active, launched jobs in the form of a command data 

structure. The dataset of the application is stored in the unified 

system memory, which the accelerators also access via private 
or shared DMA engines. However, explicit data management 

is not required by the programmer or by the kernel driver. 
Programming direct memory access (DMA) engines to copy 

data to/from the accelerator is done by the dispatcher. The 
predefined data structure that is used to exchange messages is 
depicted next. 
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Fig. 2. Interfacing a set of accelerators through a shared dispatching 
controller; job contexts can be maintained in an on-chip scratchpad memory 
shared with the CPU, or private within the dispatcher 

Arguments arg1-arg3 contain parameters of a particular 
function, and ddrBaseAddr and result fields contain physical 
DRAM addresses. We utilized field jobs. argO to denote the 
accelerator type ID that is required to handle this job. This 

means that the application supplies only the type of the 
acceleration function that is required for the supplied data 

and the responsibility of scheduling this job to an available 
accelerator co-processor is delegated to the dispatcher. The 
driver is agnostic to the accelerators' functionality and is free 
from controlling and monitoring of each DMA engine. 

In addition, control and status fields enable interaction 
with the overall acceleration process during operation. An 
application actually spin locks until the driver accepts the 

offload request as shown next: 

typedef struct accjobs { 
unsigned long const state ; /* OCCUPIED/AVAILABLE */ 
unsigned long const start ; 
unsigned long const status ; /* IDLE/DONE/ERROR */ 
unsigned long const control ; 
unsigned long queueNumber; 
unsigned long packetIndex; 
unsigned long long result; 
unsigned long long argO; /* ID-Function */ 
unsigned long long argl ; 
unsigned long long arg2 ; 
unsigned long long arg3 ; 
unsigned long long ddrBaseAddr ; 

} _attribute_«packed, aligned(I))) jobs; 

while ( io_ctl_retval == -I ) { 
io_ctl_retval = ioctl(rarnfd, CMD_ WRITE_JOB, &ioctl_args_address); 

} 
and to identify the completion of the jobs as follows: 

io_ctl_retval = ioctl(rarnfd, CMD_DONE_JOB, &ioctl_args_address); 

IV. HARDWARE-SOFTWARE INTERFACE 

Each accelerator can be represented as a physical device and 
have its own ioctl commands. However, the key idea is that 
customized hardware accelerators that present insignificant 

differences in their interface can be grouped to the same 
dispatcher and share the same iocd commands. The synergy 
of the dispatcher with the device driver offer an abstraction 
layer that shields the accelerators through using a uniform 

data structure, acc..Jobs and a "packetized" interface of fixed 

size. The dispatcher is responsible to handle the particular 

accelerator details. Synchronization, queuing, polling and low
level handshaking with each accelerator is assigned to the 

dispatcher, while the driver operates as a mediator. We differ 

from the bifurcated driver concept [21] that implements a fast 
path, in the sense that in addition to the optimized RxlTX 

queue pairs split-off design we support a homogenized-unified 

abstraction layer. 

On the programmers side, the ioctlO system calls that 
we developed in the form of a unified driver include: (i) 

SUBMIT_JOB: the first function is to copy the job data 
structure to kernel space and copy it to a dispatcher buffer, (ii) 

START_JOB: triggers the dispatcher to activate the accelerator 
by issuing a iowrite32( ) call to set the start field of the 

job, (iii) DONE_JOB: to check the accelerator progress and 
identify if an error occured. 

In the baseline system an application starts by deciding 
to offload a job to a particular hardware accelerator that is 

accessible through the kernel-space driver. Once the appli
cation has set up the device interface by calling the openO 
system call to get a file descriptor, it can access the accelerator 

by issuing ioctlO commands using this file descriptor. If the 
iocd call is successful then a down_write() operation on the 
application's descriptor private_data semaphore will prevent 

other processes from accessing the same resource and put them 
to sleep. By exposing the developed ioctl command interface, 



a process can submit several jobs to the available dispatcher 

buffers and independently start the desired job. 
Notice that hardware accelerators access the same DRAM 

system memory that the OS uses. However, each accelerator 

either directly or through a DMA operation can access phys
ical memory locations while the applications are executing 
in virtual address space. Since we assume an I/O memory 

management unit that can potentially perform virtual to phys
ical translation is not utilized, the driver must perform these 

operations with phys_to_ virtO and virt_to_physO calls. Instead 

of translating the pages that a user application has allocated 
to physical addresses, (since these can be non-contiguous) a 
different approach is employed. 

As it is commonly adopted in modem OSes, a DMA API 

is capable of handling coherency between CPUs and external 
devices when accessing the same physical memory. The driver 

uses dma_alloc_coherent( ) with GFP _ATOMIC flag (to avoid 
interrupt or SMP locks side-effects), which returns a pointer to 

the allocated region (in the processor's virtual address space) 
that is used to communicate with the user application and a 
"dma_handle" that is cast to an unsigned integer and given 

to the device as the bus address base of the region. This 
call ensures worry-free accesses to memory with no caching 
effects. However, the processor's write buffers need to be 
flushed before the device can read the same memory locations, 

and the other way round. The virtual address returned from 
the dma311oc30herent( ) call is used to perform the copy of 
the data from the userland by calling the copy _from_userO, 
as shown in figure 3. The physical address though of this 

kernel-space buffer is stored in the data structure that is send 

by using iowrite320 to the dispatcher scratchpad memory, in 

order for the DMA controller to work. The dispatcher FSM 
is then triggered to extract the appropriate fields from this 

command structure and program the corresponding hardware 

accelerator. 
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Fig. 3. Communication and phases when an application offloads a job to the 
hardware accelerator through a kernel driver 

Instead of utilizing the DMA controller that is integrated 
in the processing subsystem of the Zynq-7000 family SoCs to 

share among the accelerators, our architecture is based on an 

independent DMA controller that is tightly coupled with each 
hardware accelerator. 

The proof of concept platform is based on the ZYNQ7020 
system-on-chip that is integrated on a ZedBoard platform. 
On top, Linux Ubuntu 14.10 (GNU/Linux 4.0.0-xilinx-11415-

g4321598 armv71) runs and we compiled test applications 
using gcc (Ubuntu/Linaro 4.8.1-lOubuntu8). 

A. CPU-Hardware Accelerator Communication Costs 

We quantify the cost of copy operations from user to kernel 

space for different matrix sizes. For accuracy we included a 
hardware timer attached to the dispatcher that collects the ac

tual processing time (in clock cycles) for an offload operation. 

The timer measurement includes the DMA operations to get 
the matrices and store the result while operating in streaming 

mode. From the software side, the driver reported the latency 
of copy operations using ktime_getO (and getnstimeofdayO 
for verification). At user level, the application used the func

tion clock_gettimeO with CLOCK_MONOTONIC option to 

summarize the total time of an offload operation. 

Figure 4 shows the ratio of the copy operations for the two 
source matrices and for the resulting matrix, three in total, 

over the actual time required for the hardware accelerator. 
This is reported in clock cycles of 100MHz by using an 

independent hardware counter. The time values reported from 
the Cortex A9 CPU s are normalized to number of clock cycles 
(f=666Mhz) for fairness. 
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Fig. 4. Ratio of cost of copy operations over actual processing on the FPGA 
for matrix multiplication of varying matrix size; the vertical axis on the right 
depicts the performance of the hardware accelerator in /lsec 

Therefore, the cost of copy operations is significant, espe
cially for fine-grain offloads. As the plot shows, in order to 
achieve less than 10% latency (actually 9.l3%), the matrices 
should be at least 50x50 in size. When the hardware accelera

tor handles large jobs, then the ratio of the time spent in copy 

operations reduces. Nevertheless, this time is actually wasted, 
since no useful processing is done. 

V. ZERO-COPY OFFLOADING 

The principle to achieve an offload operation with near 
zero-copy operations is to design an API that allows the 
kernel-space driver to provide the corresponding memory 

area to user-space in a way that this memory space can be 



physically accessed by an accelerator without any virtual-to
physical address translation. The benefits are many-fold since 

(i) the need for an IOMMU unit is eliminated (along with 
its overheads) and in the same time, (ii) copy operations are 

no longer necessary. Even if the dataset is larger than one 
page size, the risk of splitting this dataset to non-contiguous 
memory pages is eliminated since the allocation is done by 

the kernel driver, which takes care of using contiguous address 
space. 

Initially, a driver is loaded that uses a dma_alloc_coherentO 
call to allocate a contiguous memory space, which is then 

exposed to userland by using dma_mmap_coherentO. At the 
same time the dma_handle is exported to the accelerator 

driver, since now this physical address will be used in a 

straightforward way. 

Figure 5 shows the process for an offload operation by an 
application that utilizes the devices exposed by the two drivers, 
which we call them throughout this work as AllocDriver and 

JDriver. Initially, the application maps the memory area that is 
allocated by the AllocDriver to its virtual address space. This 

memory space is used by the application to place and initialize 
the matrices that need to be multiplied through using a mmap() 

system call; this system call has an average of 28usec latency 
in our prototype platform. Then, the application passes the 
same ioctl commands to the updated JDriver, which now does 

not need to perform copies; the driver now sends the job 

parameters directly to the accelerator and starts the accelerator. 

JDriver communicates with AllocDriver which exports the 
physical address, the dma_handle of the allocated-exported 
memory pages. Hence, what JDriver only does is to forward 

the location of the data in relation to this dma_handle to the 

accelerator. No data copy is performed in this way. When the 
multiplication is completed, the application is notified that 
the result data are ready in place. The use of atomic oper
ations implement synchronization among applications which 

compete to access the device. Locking can be utilized at 
the kernel driver level through using down_write() operation, 
or by the applications themselves using Linux mutexes in a 
distributed fashion. The current driver implementation resolves 
contention by using the semaphore option. In addition, it 

returns to the application the current handle of the allocated 

space in order not to maintain internally data structures of the 
provided handles. When the offload operation completes the 

user provides the appropriate handle to the driver to free the 
space. 

Figure 6 compares the acceleration in two different scenar

ios. The matrix multiplication benchmark is executed on the 

ZYNQ7020 SoC using the baseline driver (JDriver), and, in the 

second scenario, using the synergistic API by the AllocDriver 

and the modified JDriver to achieve zero-copy offloading. In 
the latter case the modified JDriver does not perform copies. 

Both the driver and the dispatcher use a single command buffer 
submitting one job at a time. As the plot depicts, the gain 
is larger for fine-grain jobs, bringing almost 16% advantage 
compared to the baseline case. Notice that the plot depicts 

actual collected measurements, which however involve the 
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Fig. 5. Sequence of operations when an application offioads a computation 
through the AllocDriver that exports the physical memory to share with the 
accelerator and the JDriver that performs control functions using the job 
packet interface. 

operation of the accelerators in lOOMHz and should be scaled 

to the operating frequency of the processor in a real embedded 
Soc. By this projection of time the gain is even larger, since 
the actual latency of the accelerator would be much shorter. 
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Fig. 6. Optimization results for offioading matrix multiplication for different 
matrix sizes (N x N), by using the exposed kernel memory to user space 
(To ff load), in comparison to allowing the kernel driver perform copies of 
data to kernel space before enabling the accelerator (TojjloadKeTn)' 

When the offloaded job exhibits large latency the percentage 
of the gain decreases; nonetheless, the cost of copies is still 

significant. The time to copy data for large matrices can 
amount to the total time to accelerate small jobs. 

A. Optimizing Driver Dispatcher Communication 

We optimized the dispatcher to use double command buffer

ing to reduce latency when communicating to an accelerator. 
In addition, the JDriver now locks the job launching phase 
only, and not the full offload operation. Thus, another user 
application can also submit to the dispatcher a subsequent 

job that must wait in the second buffer for the active offload 



TABLE I 
AVERAGE LATENCY FOR OFFLOADING MATRIX MULTIPLICATION FOR 
DIFFERENT MATRIX SIZES (N X N), AND AVERAGE DEVIATION FROM 

MEAN VALUE. 

Matrix Size AVG Time (sec) AVG Deviation 
4x4 0.00015015 0.00001791 
8x8 0.00016895 0.000023025 

20x20 0.0003001 0.00005117 
30x30 0.00052895 0.00002603 
50x50 0.0852812 0.0444605 
80x80 0.21362645 0.087311815 

acceleration to complete. The driver now supports one more 
ioctl command to provide a new base address in the contiguous 

space if another application offload is already active. Actually, 
a circular data allocation scheme is implemented to simplify 

and provide a management scheme at low cost. 
Table I shows the average deviation from the mean latency 

when offloading concurrently tens of user applications that 
offload matrix multiplication operations. When the matrices 
are small no significant competition is observed since the cost 
of a system call actually is comparable with the cost of the 
calculation at the accelerator. The deviation raises sharply for 
larger workloads. 

V I. CONCLUSIONS 

Even though by accessing the hardware directly enables 
the development of an efficient access model without the 
recurring overhead incurred by adding an abstraction layer, 
direct mapping of device resources into an application limits 
concurrency and schedulability. The proposed dispatching 

scheme is beneficial in heterogeneous SoCs with unified 

address space offering elimination of overheads in dynamic 
execution environments where offloading of many processes 
for short periods dominates. Our architecture can also be 
employed as an optimized solution in embedded systems with 
limited amounts of physical memory since it offers better 
performance predictability since other mechanisms may first 
need to relocate data, e.g., to move data out of the pre-allocated 

physical memory region, or to free space to allocate huge 

pages. 
In the future we envision operating system interfaces that 

allow for virtualization of the hardware accelerator resources 
and their interfaces by providing both hardware and software 
implementations of the accelerator. Virtualization allows the 
operating system, guided by system policies, to share reconfig

urable resources efficiently between processes while providing 

a consistent interface to the user. 
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