
Efficient Communication in Heterogeneous SoCs

with Unified Address Space

Othon Tomoutzoglou*, Dimitrios Bakoyannis*, George Komaros* and Marcello Coppolat

*Informatics Engineering Dept., Technological Educational Institute of Crete

Heraklion, Crete, Greece
t STMicroelectronics, Grenoble, France

Abstract-As recent heterogeneous system designs integrate
general purpose processors, GPUs, and other specialized accel
erator devices into a single platform to provide both power and
performance benefits, it is important to support efficient dispatch
ing mechanisms in terms of performance and programmability.
This work proposes models for integrating hardware accelerators
with applications executing under standard operating systems
on an embedded processor. Instead of using direct mapping of
accelerator units to user applications, or using legacy drivers
that incur communication overheads and large programming
effort, we develop an abstraction layer in kernel driver which
driver communicates with a custom dispatcher to interface a
number of hardware accelerators. At the same time we remove
the need to include IOMMUs for virtual-to-physical translation
from the device side, and the need to perform copies from
user to kernel space when offtoading computational instensive
tasks to the accelerators. We demonstrate the effectiveness of
our solutions running real applications on a prototype hybrid
heterogeneous System-on-Chip platform.

Index Tenns-Heterogeneous SoC, Accelerator Dispatcher,
Processor-Accelerator Unified Address Space, IOMMU-free on
chip Communication.

I. INTRODUCTION

As general-purpose computing effectively takes advantage
of throughput-oriented processing components, such as Graph
ics Processing Units (GPUs), different techniques emerge to

amortize heterogeneity in terms of architectural differences
and programmability. Multiple processing units with their own
memory may incur potentially penalty to access the data if
these are not in close proximity, especially if they reside

in a different address space. To tackle this challenge fused

architectures, that is multi-core CPUs and many-core GPUs
are integrated on a single chip with a shared on-chip L3
cache, to produce what AMD calls accelerated processing units

(APUs) [1], providing the opportunity to leverage the high
computational power of the GPUs. In addition, inspired by

these architectures Heterogeneous System Architecture (HSA)
Foundation [2] proposes a unified virtual address space and

coherent shared memory spanning the APU, enabling user
level task queues in order to reduce offloading latency.

Today, in heterogeneous architectures, computational inten
sive tasks, commonly called kernels must be launched via a

run-time system through a device driver to the co-processor,
and an execution context is created within the co-processor

prior to execution. The co-processor commonly use a ded

icated system memory partition where the data must reside

978-1-5090-2520-6/16/$31.00 ©2016 IEEE

and the co-processor also provides a dedicated fast memory

unit and DMA engine. Thus, co-processors programming has

both memory data setup and program setup overhead through

the run-time system, and unless several kernels are executed
sequentially in the co-processors to hide the overhead, the
setup and tear down overhead for a single kernel can exceed
any benefit gain via the co-processor. In the scope of HSA

memory architecture an offload operation is simplified by

passing virtual memory pointers to shared data from the host to
the accelerator, in the same way that shared memory parallel
programs pass pointers between threads running on a CPU.

Even though this increases programmability and compiler

implementations for offloading process, it asks for support
of dedicated hardware blocks such as Input/Output Memory

Management Units (IOMMUs) to allow the accelerator to
handle addresses in paged virtual memory [3].

Moreover, as acceleration devices execute outside the pro

cessor, they usually lack access to processor's virtual address

space and invoking the accelerator may require pinning data

in memory and translating virtual addresses in advance of
launching the accelerated computation. Researchers have pro
posed single CPU thread to assist in prefetching data for

many GPU threads [4] or channels, i.e. multi-producer/multi

consumer data queues that aggregate fine-grain work items
before scheduling to the GPUs [5]. In this work we address the
challenge to make the data available in an efficient way in the
address space of a co-processor while minimizing unnecessary

time to transfer data and virtual-to-physical translations.
In addition, system software must be heterogeneity-aware in

order to leverage the power-efficiency of heterogeneous sys
tems [6]. Researchers propose heterogeneity-aware scheduling

algorithms in a hypervisor and resource partitioning to allow
scalability, or disengagement of scheduling extensions from
the OS scheduler. In a direction similar to Beisel et al.,[7] the
scheduling principles are hidden from the application devel
oper and thus the OS can perform global decisions based on

the system utilization. Application-specific scheduling inputs
still have to be provided by the application developer to in

corporate applications needs. As they use a hybrid userlkernel

level approach to perform heterogeneous scheduling, we also

have a hybrid scheduling mechanism near the accelerator
processing engines that provides a unified general-purpose
interface to the system OS and applications.

The main contributions of this work are summarized next.

• An architecture to integrate multiple fine-grain asymmet

ric accelerators with a common unifying interface.
• An efficient accelerator interface that allows the de

veloped kernel driver (i) to interact and configure this

interface/dispatcher, (ii) to supply multiple jobs to a run
time programmable number of buffers, thus isolating and

decoupling from the particular accelerators functionality
and operation rate. These buffers reside in a scratchpad
memory which is tightly coupled with the accelerators in
order to overlap communication with processing time.

• Disengagement of the completion phase from the launch

phase for an offload operation instead of the common
binding of the user application to the accelerator driver

for the lifetime of the offloading processes.

The rest of the paper is organized as follows. Section II
presents related work. Section III describes our framework

and and its implementation on our evaluation platform, while
section IV analyzes the hardware-software interface. Section V

provides the description of our optimized solution and finally

Section VI concludes the paper.

II. RELATED WORK

Fixed-function accelerators commonly use scratchpad mem
ories and DMA engines or caches. Cache-based memory

hierarchy is inefficient for bulk data movement in 110 bound
applications, but can be more efficient at on-demand, fine
grained data transfer for applications, and depending on the ap

plications memory access patterns [8]. In industry, IBM intro
duced the Coherent Accelerator Processor Interface (CAPI) on

POWER8 systems to provide a high-performance solution for

implementing client-specific computation-heavy algorithms on

FPGAs [9]. On top, the Multi Accelerator Platform Engine for
Baseband (MAPLE-B) consists of a programmable-system
interface (PSIF) that is a programmable controller with DMA

capabilities and signal-processing accelerators attached using

an internal interface [10] [11]. Intel's open approach to FSB
coupled accelerators proposes the QuickAssist Technology Ac
celerator Abstraction Layer to simplify the use and deployment

of tightly-coupled accelerators [12] [13]. By using a reduced
functionality or "bare-bone" API, named dataplane API, or
by batching requests, Intel aims to reduce offload latency.

Automatically managing data and optimizing communica

tion has been addressed in the context of CPU-GPU data
management through using compiler-assisted techniques to
transfer data to the appropriate memory space [14][15]. In the

StarPU runtime [16], applications submit computational tasks,
forming a task graph, with CPU and/or GPU implementations,

and StarPU schedules these tasks and associated data transfers
on available CPUs and GPUs. StarPU optimizes data transfers
using prefetching and overlapping. In the same scope semi

automatic techniques, such as Global Memory for Acceler
ators (GMAC) require programmers to add annotations [17].

Unified virtual addressing [18] (UVA) abstracts away from the
programmer the actual location of data, whether on any of the

GPUs or on the CPU. On top we propose methods to eliminate

time-consuming operations in cases that can be avoided, such
as in small or fine-grain data transfers.

In order to tackle offloading overheads, researchers have
also proposed dynamically aggregating asynchronously pro

duced fine-grain work into coarser-grain tasks leveraging the
GPU's control processor to manage those queues [5]. Op

tionally, engineers develop hardware-assisted direct memory
access (DMA) and the 110 read and- write access methods
along with on-chip microcontrollers inside the GPU to offer

effective solutions in terms of reducing the data transfer
latency for concurrent data streams [19]; Fujii et al. [19]

showed that direct 110 operations are faster than using DMA
controllers for small data transfers.

III. EMBEDDING TIGHTLY-COUPLED HARDWARE

ACCELERATORS

The biggest constraint for a system extended with accelera
tor coprocessors is the requirement for the CPU to coordinate

transfers of data and commands between the host and each
co-processor's local memory. To avoid wasting performance

on unnecessary coordination tasks one option is tightly cou
pling through instruction customization, such as NEON SIMD
extensions for ARM processors. On the other hand though,

customized hardware peripherals can easily offer domain
specific acceleration, with different organizations, hierarchical

or parallel. We opted for interfacing with hardware fixed- or
programmable accelerators while providing a unifying and low

overhead programming API. While the integrated hardware

SIMD pipelines offer significant performance improvements

also by removing the need to copy data to a specialized

accelerator, still, they can be outperformed by a customized

hardware accelerator. We use an evaluation platform based on

the Xilinx Zynq-7000 all Programmable SoC [20]. As shown
in figure 1, the two NEON pipelines can be the bottleneck
when multiple instances are launched on the processors. The

equivalent instructions per clock cycle (IPC) for matrix mul
tiplication reaches 1.4, while when offloading to an optimized
hardware matrix multiplicator the average IPC is 3.44. We
used the hardware performance counters to collect the number
of hardware instructions that are executed in the ARM Cortex

A9 CPU and we scaled the clock cycles that are needed by
the hardware accelerator in the FPGA to match the frequency
of the CPU processing system.

Scratchpad-based memory systems are currently the pre
dominant memory system organization used by fixed-function
accelerators. Each accelerator's local scratchpad is usually
only visible to its own datapath. Figure 2 shows the organi

zation of a system that integrates a number of fixed-function

hardware accelerators, potentially heterogeneous ones. These
accelerator processing units are non-preemptive. All hardware
accelerators are controlled by a single dispatcher that is

responsible to supply the parameters for launching one job and

communicate with the system CPU. The dispatcher abstracts
the diversity of the functionality of these custom accelerators

by presenting a single general-purpose API to the host CPU

and encapsulating the accelerators details. The dispatcher and

sec 100 ,------------

(Log scale)
10 +----------___

0.1

0.01

0.001

0.0001

0.00001 "------------

.1 run

.10 runs (avg)

Matrix Size (NxN)

Fig. 1. Matrix multiplication for different matrix sizes using the NEON
SIMD extensions on an ARM A9 processor, for a single and ten simultaneous
launches

the CPU communicate through a shared scratchpad memory
that stores active, launched jobs in the form of a command data

structure. The dataset of the application is stored in the unified

system memory, which the accelerators also access via private
or shared DMA engines. However, explicit data management

is not required by the programmer or by the kernel driver.
Programming direct memory access (DMA) engines to copy

data to/from the accelerator is done by the dispatcher. The
predefined data structure that is used to exchange messages is
depicted next.

CPU

L CmdBuCO
CmdBuC1

CmdBuCM

Scratch pad
RAM

Multi-Function
Accelerator

System
Memory

Fig. 2. Interfacing a set of accelerators through a shared dispatching
controller; job contexts can be maintained in an on-chip scratchpad memory
shared with the CPU, or private within the dispatcher

Arguments arg1-arg3 contain parameters of a particular
function, and ddrBaseAddr and result fields contain physical
DRAM addresses. We utilized field jobs. argO to denote the
accelerator type ID that is required to handle this job. This

means that the application supplies only the type of the
acceleration function that is required for the supplied data

and the responsibility of scheduling this job to an available
accelerator co-processor is delegated to the dispatcher. The
driver is agnostic to the accelerators' functionality and is free
from controlling and monitoring of each DMA engine.

In addition, control and status fields enable interaction
with the overall acceleration process during operation. An
application actually spin locks until the driver accepts the

offload request as shown next:

typedef struct accjobs {
unsigned long const state ; /* OCCUPIED/AVAILABLE */
unsigned long const start ;
unsigned long const status ; /* IDLE/DONE/ERROR */
unsigned long const control ;
unsigned long queueNumber;
unsigned long packetIndex;
unsigned long long result;
unsigned long long argO; /* ID-Function */
unsigned long long argl ;
unsigned long long arg2 ;
unsigned long long arg3 ;
unsigned long long ddrBaseAddr ;

} _attribute_«packed, aligned(I))) jobs;

while (io_ctl_retval == -I) {
io_ctl_retval = ioctl(rarnfd, CMD_ WRITE_JOB, &ioctl_args_address);

}
and to identify the completion of the jobs as follows:

io_ctl_retval = ioctl(rarnfd, CMD_DONE_JOB, &ioctl_args_address);

IV. HARDWARE-SOFTWARE INTERFACE

Each accelerator can be represented as a physical device and
have its own ioctl commands. However, the key idea is that
customized hardware accelerators that present insignificant

differences in their interface can be grouped to the same
dispatcher and share the same iocd commands. The synergy
of the dispatcher with the device driver offer an abstraction
layer that shields the accelerators through using a uniform

data structure, acc..Jobs and a "packetized" interface of fixed

size. The dispatcher is responsible to handle the particular

accelerator details. Synchronization, queuing, polling and low
level handshaking with each accelerator is assigned to the

dispatcher, while the driver operates as a mediator. We differ

from the bifurcated driver concept [21] that implements a fast
path, in the sense that in addition to the optimized RxlTX

queue pairs split-off design we support a homogenized-unified

abstraction layer.

On the programmers side, the ioctlO system calls that
we developed in the form of a unified driver include: (i)

SUBMIT_JOB: the first function is to copy the job data
structure to kernel space and copy it to a dispatcher buffer, (ii)

START_JOB: triggers the dispatcher to activate the accelerator
by issuing a iowrite32() call to set the start field of the

job, (iii) DONE_JOB: to check the accelerator progress and
identify if an error occured.

In the baseline system an application starts by deciding
to offload a job to a particular hardware accelerator that is

accessible through the kernel-space driver. Once the appli
cation has set up the device interface by calling the openO
system call to get a file descriptor, it can access the accelerator

by issuing ioctlO commands using this file descriptor. If the
iocd call is successful then a down_write() operation on the
application's descriptor private_data semaphore will prevent

other processes from accessing the same resource and put them
to sleep. By exposing the developed ioctl command interface,

a process can submit several jobs to the available dispatcher

buffers and independently start the desired job.
Notice that hardware accelerators access the same DRAM

system memory that the OS uses. However, each accelerator

either directly or through a DMA operation can access phys
ical memory locations while the applications are executing
in virtual address space. Since we assume an I/O memory

management unit that can potentially perform virtual to phys
ical translation is not utilized, the driver must perform these

operations with phys_to_ virtO and virt_to_physO calls. Instead

of translating the pages that a user application has allocated
to physical addresses, (since these can be non-contiguous) a
different approach is employed.

As it is commonly adopted in modem OSes, a DMA API

is capable of handling coherency between CPUs and external
devices when accessing the same physical memory. The driver

uses dma_alloc_coherent() with GFP _ATOMIC flag (to avoid
interrupt or SMP locks side-effects), which returns a pointer to

the allocated region (in the processor's virtual address space)
that is used to communicate with the user application and a
"dma_handle" that is cast to an unsigned integer and given

to the device as the bus address base of the region. This
call ensures worry-free accesses to memory with no caching
effects. However, the processor's write buffers need to be
flushed before the device can read the same memory locations,

and the other way round. The virtual address returned from
the dma311oc30herent() call is used to perform the copy of
the data from the userland by calling the copy _from_userO,
as shown in figure 3. The physical address though of this

kernel-space buffer is stored in the data structure that is send

by using iowrite320 to the dispatcher scratchpad memory, in

order for the DMA controller to work. The dispatcher FSM
is then triggered to extract the appropriate fields from this

command structure and program the corresponding hardware

accelerator.

System Memory

�------------� __ � _ _ '�s�rC�Dl,ailitali

Submit_Job � _
Result Data

. · �r�:r��;f;��i:;;���X:-: --:-: Src Data

� copy-to_user iy----- __ _
: � - - --

..... �

Dst Data

User Space

Kernel Space

Device Space

Fig. 3. Communication and phases when an application offloads a job to the
hardware accelerator through a kernel driver

Instead of utilizing the DMA controller that is integrated
in the processing subsystem of the Zynq-7000 family SoCs to

share among the accelerators, our architecture is based on an

independent DMA controller that is tightly coupled with each
hardware accelerator.

The proof of concept platform is based on the ZYNQ7020
system-on-chip that is integrated on a ZedBoard platform.
On top, Linux Ubuntu 14.10 (GNU/Linux 4.0.0-xilinx-11415-

g4321598 armv71) runs and we compiled test applications
using gcc (Ubuntu/Linaro 4.8.1-lOubuntu8).

A. CPU-Hardware Accelerator Communication Costs

We quantify the cost of copy operations from user to kernel

space for different matrix sizes. For accuracy we included a
hardware timer attached to the dispatcher that collects the ac

tual processing time (in clock cycles) for an offload operation.

The timer measurement includes the DMA operations to get
the matrices and store the result while operating in streaming

mode. From the software side, the driver reported the latency
of copy operations using ktime_getO (and getnstimeofdayO
for verification). At user level, the application used the func

tion clock_gettimeO with CLOCK_MONOTONIC option to

summarize the total time of an offload operation.

Figure 4 shows the ratio of the copy operations for the two
source matrices and for the resulting matrix, three in total,

over the actual time required for the hardware accelerator.
This is reported in clock cycles of 100MHz by using an

independent hardware counter. The time values reported from
the Cortex A9 CPU s are normalized to number of clock cycles
(f=666Mhz) for fairness.

20.00% 7,000.00 (usec)
18.00%

6,000.00 _KDcopy/HW
16.00% (%)(cc)

14.00% 5,000.00

12.00%
_AccO Latency

4,000.00 (usee)

10.00%

8.00%
3,000.00

6.00% 2,000.00

4.00%

2.00%
1,000.00

0.00% 0.00

10 20 30 50 70 80 Matrix Size

Fig. 4. Ratio of cost of copy operations over actual processing on the FPGA
for matrix multiplication of varying matrix size; the vertical axis on the right
depicts the performance of the hardware accelerator in /lsec

Therefore, the cost of copy operations is significant, espe
cially for fine-grain offloads. As the plot shows, in order to
achieve less than 10% latency (actually 9.l3%), the matrices
should be at least 50x50 in size. When the hardware accelera

tor handles large jobs, then the ratio of the time spent in copy

operations reduces. Nevertheless, this time is actually wasted,
since no useful processing is done.

V. ZERO-COPY OFFLOADING

The principle to achieve an offload operation with near
zero-copy operations is to design an API that allows the
kernel-space driver to provide the corresponding memory

area to user-space in a way that this memory space can be

physically accessed by an accelerator without any virtual-to
physical address translation. The benefits are many-fold since

(i) the need for an IOMMU unit is eliminated (along with
its overheads) and in the same time, (ii) copy operations are

no longer necessary. Even if the dataset is larger than one
page size, the risk of splitting this dataset to non-contiguous
memory pages is eliminated since the allocation is done by

the kernel driver, which takes care of using contiguous address
space.

Initially, a driver is loaded that uses a dma_alloc_coherentO
call to allocate a contiguous memory space, which is then

exposed to userland by using dma_mmap_coherentO. At the
same time the dma_handle is exported to the accelerator

driver, since now this physical address will be used in a

straightforward way.

Figure 5 shows the process for an offload operation by an
application that utilizes the devices exposed by the two drivers,
which we call them throughout this work as AllocDriver and

JDriver. Initially, the application maps the memory area that is
allocated by the AllocDriver to its virtual address space. This

memory space is used by the application to place and initialize
the matrices that need to be multiplied through using a mmap()

system call; this system call has an average of 28usec latency
in our prototype platform. Then, the application passes the
same ioctl commands to the updated JDriver, which now does

not need to perform copies; the driver now sends the job

parameters directly to the accelerator and starts the accelerator.

JDriver communicates with AllocDriver which exports the
physical address, the dma_handle of the allocated-exported
memory pages. Hence, what JDriver only does is to forward

the location of the data in relation to this dma_handle to the

accelerator. No data copy is performed in this way. When the
multiplication is completed, the application is notified that
the result data are ready in place. The use of atomic oper
ations implement synchronization among applications which

compete to access the device. Locking can be utilized at
the kernel driver level through using down_write() operation,
or by the applications themselves using Linux mutexes in a
distributed fashion. The current driver implementation resolves
contention by using the semaphore option. In addition, it

returns to the application the current handle of the allocated

space in order not to maintain internally data structures of the
provided handles. When the offload operation completes the

user provides the appropriate handle to the driver to free the
space.

Figure 6 compares the acceleration in two different scenar

ios. The matrix multiplication benchmark is executed on the

ZYNQ7020 SoC using the baseline driver (JDriver), and, in the

second scenario, using the synergistic API by the AllocDriver

and the modified JDriver to achieve zero-copy offloading. In
the latter case the modified JDriver does not perform copies.

Both the driver and the dispatcher use a single command buffer
submitting one job at a time. As the plot depicts, the gain
is larger for fine-grain jobs, bringing almost 16% advantage
compared to the baseline case. Notice that the plot depicts

actual collected measurements, which however involve the

System Memory

Job Data
Struct User Space

Job Data
Struct (copy) Kernel Space

Src Data
Result Data

Accelerator
Processing Core

Fig. 5. Sequence of operations when an application offioads a computation
through the AllocDriver that exports the physical memory to share with the
accelerator and the JDriver that performs control functions using the job
packet interface.

operation of the accelerators in lOOMHz and should be scaled

to the operating frequency of the processor in a real embedded
Soc. By this projection of time the gain is even larger, since
the actual latency of the accelerator would be much shorter.

t (sec)
0.007000 ,-----------------

0.006000 +--------------

0.005000 +--------------

0.004000 +------------

0.003000 +------------

0.002000 +------------

0.001000 +---------

0.000000 +---...,..-.... -... ----.

• Toffload (avg)

• Toffload Kern

(avg)

10 20 30 50 70 80 Matrix Size

Time Diff: 16.08% 14.51% 10.65% 7.23% 4.74% 3.60% 3.07%

Fig. 6. Optimization results for offioading matrix multiplication for different
matrix sizes (N x N), by using the exposed kernel memory to user space
(To ff load), in comparison to allowing the kernel driver perform copies of
data to kernel space before enabling the accelerator (TojjloadKeTn)'

When the offloaded job exhibits large latency the percentage
of the gain decreases; nonetheless, the cost of copies is still

significant. The time to copy data for large matrices can
amount to the total time to accelerate small jobs.

A. Optimizing Driver Dispatcher Communication

We optimized the dispatcher to use double command buffer

ing to reduce latency when communicating to an accelerator.
In addition, the JDriver now locks the job launching phase
only, and not the full offload operation. Thus, another user
application can also submit to the dispatcher a subsequent

job that must wait in the second buffer for the active offload

TABLE I
AVERAGE LATENCY FOR OFFLOADING MATRIX MULTIPLICATION FOR
DIFFERENT MATRIX SIZES (N X N), AND AVERAGE DEVIATION FROM

MEAN VALUE.

Matrix Size AVG Time (sec) AVG Deviation
4x4 0.00015015 0.00001791
8x8 0.00016895 0.000023025

20x20 0.0003001 0.00005117
30x30 0.00052895 0.00002603
50x50 0.0852812 0.0444605
80x80 0.21362645 0.087311815

acceleration to complete. The driver now supports one more
ioctl command to provide a new base address in the contiguous

space if another application offload is already active. Actually,
a circular data allocation scheme is implemented to simplify

and provide a management scheme at low cost.
Table I shows the average deviation from the mean latency

when offloading concurrently tens of user applications that
offload matrix multiplication operations. When the matrices
are small no significant competition is observed since the cost
of a system call actually is comparable with the cost of the
calculation at the accelerator. The deviation raises sharply for
larger workloads.

V I. CONCLUSIONS

Even though by accessing the hardware directly enables
the development of an efficient access model without the
recurring overhead incurred by adding an abstraction layer,
direct mapping of device resources into an application limits
concurrency and schedulability. The proposed dispatching

scheme is beneficial in heterogeneous SoCs with unified

address space offering elimination of overheads in dynamic
execution environments where offloading of many processes
for short periods dominates. Our architecture can also be
employed as an optimized solution in embedded systems with
limited amounts of physical memory since it offers better
performance predictability since other mechanisms may first
need to relocate data, e.g., to move data out of the pre-allocated

physical memory region, or to free space to allocate huge

pages.
In the future we envision operating system interfaces that

allow for virtualization of the hardware accelerator resources
and their interfaces by providing both hardware and software
implementations of the accelerator. Virtualization allows the
operating system, guided by system policies, to share reconfig

urable resources efficiently between processes while providing

a consistent interface to the user.

ACKNOWLEDGMENT

This work was partially supported by the ED FP7 project

SAVE under contract FP7-ICT-2013-1O No 610996. We also
thank the anonymous reviewers for their helpful comments.

REFERENCES

[1] N. Brookwood, "AMD fusion family of apus: Enabling
a superior, immersive pc experience." [Online]. Available:
www.amd.comIDocuments/48423_fusion_whitepapecWEB.pdf

[2] HSAFoundation, "HSA platform system architecture specification," pro
visional 1.0 - Ratified April 18, 2014.

[3] G. Komaros, K. Harteros, I. Christoforakis, and M. Astrinaki, "110
virtualization utilizing an efficient hardware system-level memory man
agement unit," in System-on-Chip (SoC), 2014 International Symposium
on, Oct 2014, pp. 1-4.

[4] Y. Yang, P. Xiang, M. Mantor, and H. Zhou, "Cpu-assisted gpgpu on
fused cpu-gpu architectures," in Proceedings of the 2012 IEEE 18th
International Symposium on High-Performance Computer Architecture,
ser. HPCA '12, 2012, pp. 1-12.

[5] M. S. Orr, B. M. Beckmann, S. K. Reinhardt, and D. A. Wood, "Fine
grain task aggregation and coordination on gpus," in Proceeding of the
41st Annual International Symposium on Computer Architecuture, ser.
ISCA '14, 2014, pp. 181-192.

[6] A. Fedorova, V. Kumar, V. Kazempour, S. Ray, and A. Pouya, "Cypress:
A scheduling infrastructure for a many-core hypervisor," in In Proceed
ings of the Workshop on Managed Multi-Core Systems (MMCS'08), in
conjunction with the (HPDC-17), 2008.

[7] T. Beisel, T. Wiersema, C. Pless1, and A. Brinkmann, "Programming and
scheduling model for supporting heterogeneous accelerators in 1inux;'
in Proc. Workshop on Computer Architecture and Operating System Co
design (CAOS), jan 2012.

[8] Y. S. Shao, S. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks, "Toward
Cache-Friendly Hardware Accelerators," in Proceedings of the Sensors
to Cloud Architectures Workshop (SCAW), in conjuction with HPCA
2015, 2015.

[9] B. Wile, "Coherent accelerator processor interface (CAPI)
for POWER8 systems." [Online]. Available: www-
304.ibm.comlwebapp/set2/sas/f/capi/home.html

[10] Freescale, "Msba8100 baseband accelerator, freescale
senticonductor, inc, 2008." [Online]. Available:
www.freescale.comlfiles/dsp/doc/facCsheetIMSBA8100FS.pdf

[11] Analog, "ADSP-SC58x and ADSP-2158x series." [Online].
Available: www.analog.comlenlproducts/landing-pages/001ladsp-sc58x
adsp-215 8x -series.html

[12] Intel, "Enabling consistent platform-level services for tightly coupled ac
celerators." [Online]. Available: www.intel.comlcontentldarnldoc/white
paper/quickassist-technology-aal-white-paper.pdf

[13] Intel, "Intel quickassist technology, performance optintization guide,"
Doc. Num.: 330687, Rev.: 1.0, Sep. 2014. [Online]. Avail
able: https://OI.org/sites/defaultlfiles/page/330687 _qaCperf_opt�ui
de_rev _1.0.pdf

[14] T. Ramashekar and U. Bondhugula, "Automatic data allocation and
buffer management for mUlti-gpu machines," ACM Trans. Archit. Code
Optim., vol. 10, no. 4, pp. 60:1-60:26, Dec. 2013.

[15] T. B. Jab1in, J. A. Jab1in, P. Prabhu, F. Liu, and D. I. August, "Dynam
ically managed data for cpu-gpu architectures," in Proceedings of the
Tenth International Symposium on Code Generation and Optimization,
ser. CGO '12, 2012, pp. 165-174.

[16] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, "StarPU:
A unified platform for task scheduling on heterogeneous multicore
architectures," Concurr. Comput. : Pract. Exper., vol. 23, no. 2, pp.
187-198, Feb. 2011.

[17] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W.
m. W. Hwu, "An asymmetric distributed shared memory model for
heterogeneous parallel systems," SIGPIAN Not., vol. 45, no. 3, pp. 347-
358, Mar. 2010.

[18] C. 2011, "Nvidia cuda programming model." [Online]. Available:
http://developer.nvidia.comlobjectlcuda.html

[19] Y. Fujii, T. Azunti, N. Nishio, S. Kato, and M. Edaltiro, "Data transfer
matters for GPU computing," in Proceedings of the 2013 International
Conference on Parallel and Distributed Systems, ser. ICPADS ' 13, 2013,
pp. 275-282.

[20] Xilinx Inc, "Zynq-7000 all programmable SoC," Tech-
nical reference manual, Feb. 2015. [Online]. Avail-
able: www.xilinx.comlsupportldocumentationlusecguides/ug585-Zynq-
7000-TRM.pdf

[21] J. Ronciak, J. Fastabend, D. Zhou, M. Chen, and
C. Liang, "Bringing DPDK to themainstream: The
bifurcated nic driver," Mar. 2014. [Online]. Available:
http://events.linuxfoundation.org/sites/events/files/slides/LinuxConEuro
pe_DPDK-2014.pdf

