

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, XXX 2019

0

10

20

30

40

50

60

4 8 16 32 64 128 256 512

Eight threads

SMP

STM

BASELINE

10

20

30

40

50

60

4 8 16 32 64 128 256 512

En
e

rg
y

(m
J)

 /
 J

o
b

Four threads

0

10

20

30

40

50

60

4 8 16 32 64 128 256 512

En
e

rg
y

(m
J)

 /
 J

o
b

One thread

0

20

40

60

80

4 8 16 32 64 128 256 512

Two threads

SMP

STM

BASELINE

Fig. 14. Energy consumption per job for SED use case with SMP, STM and
baseline methods when scaling the number of jobs from 4 to 512 and the
number of worker threads from 1 to 8.

-150%
-100%
-50%
0%
50%
100%

0
15
30
45
60
75

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

LE
G

A
C

Y

SM
P

ST
M

B
A

SE
LI

N
E

1T 2T 4T 8T

C
o

re
 E

n
e

rg
y

(m
J)

 /
 jo

b

Performance - Energy

A57

A53

Consumption Optimization (%)

Performance Deterioration (%)

-150%
-100%
-50%
0%
50%
100%

0
15
30
45
60
75

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

LE
G

A
C

Y

SM
P

ST
M

B
A

SE
LI

N
E

1T 2T 4T 8T

C
o

re
 E

n
e

rg
y

(m
J)

 /
 jo

b

Performance - Energy

A57

A53

Consumption Optimization (%)

Performance Deterioration (%)

-150%

-100%

-50%

0%

50%

100%

0

15

30

45

60

75

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

LE
G

A
C

Y

SM
P

ST
M

B
A

SE
LI

N
E

1T 2T 4T 8T

C
o

re
 E

n
e

rg
y

(m
J)

 /
 jo

b

Performance - Energy

A57 A53

Consumption Optimization (%) Performance Optimization (%)

-150%
-100%
-50%
0%
50%
100%

0
15
30
45
60
75

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

LE
G

A
C

Y

SM
P

ST
M

B
A

SE
LI

N
E

1T 2T 4T 8T

C
o

re
 E

n
e

rg
y

(m
J)

 /
 jo

b

Performance - Energy

A57

A53

Consumption Optimization (%)

Performance Optimization (%)

Fig. 15. Performance and energy consumption for SED use case for all three
dispatching methods; number of threads scales from 1 to 8 for 512 jobs each.

A comparison for the SMP, STM and the baseline methods
regarding the energy consumption is also conducted for the
MM use case. By capturing the energy that IOFPGA reports
for the same scenarios that were previously depicted in figure
13, the consumption gain for SMP is 5.1%-47.9% and for STM
is 1.8%-50.7% compared to the baseline. In particular, in the
case of two worker threads, where the baseline method proves
to be slightly faster than STM (1.2% in average), the average
gain in energy consumption for the STM over the baseline is
17.2%, ranging from 3.6% to 26.8%.

Figure 16 shows the trade-off between performance and
energy consumption when switching from A57 to A53 cluster.
As expected, when we switch the applications from A57 to
A53, the energy consumption is optimized for all the methods.
On the other hand, while the performance ranges almost at
the same level in the SMP and STM cases, for the baseline
method, the performance reduces by 2.3% (one thread) or
improves by 5.4% (four threads) and 19.7% (eight threads);
the latter results from the high intensity in communication with
the kernel driver due to fine-grain jobs, and the fact that the
A53 cluster offers two more physical processors.

In both use cases and for all methods we do not consider the
energy required in the LogicTile, since the control operations
of the GPPU are both infrequent and require data exchange
with system memory in units of 64 bytes, which is negligible
compared to the amount of processed data. To evaluate the
energy overheads of the GPPU infrastructure from the FPGA
prototype perspective, we used the Xilinx XPower Analyzer

-150%
-100%
-50%
0%
50%
100%

0
15
30
45
60
75

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

LE
G

A
C

Y

SM
P

ST
M

B
A

SE
LI

N
E

1T 2T 4T 8T

C
o

re
 E

n
e

rg
y

(m
J)

 /
 jo

b

Performance - Energy

A57

A53

Consumption Optimization (%)

Performance Deterioration (%)

-10%

0%

10%

20%

30%

40%

50%

60%

70%
80%

90%

0

2

4

6

8

10

12

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

LE
G

A
C

Y

SM
P

ST
M

B
A

SE
LI

N
E

1T 2T 4T 8T

C
o

re
 E

n
e

rg
y

(m
J)

 /
 jo

b

Performance - Energy

A57 A53

Consumption Optimization (%) Performance Optimization (%)

-150%
-100%
-50%
0%
50%
100%

0
15
30
45
60
75

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

LE
G

A
C

Y

SM
P

ST
M

B
A

SE
LI

N
E

1T 2T 4T 8T

C
o

re
 E

n
e

rg
y

(m
J)

 /
 jo

b

Performance - Energy

A57

A53

Consumption Optimization (%)

Performance Optimization (%)

Fig. 16. Performance and energy consumption for MM use case for all three
dispatching methods; number of threads scales from 1 to 8 for 2048 jobs each.

tool to extract the power figures of each hardware component.
Through setting both toggle rate and static probability to a
value of 50% we collected the dynamic power consumption
that is shown in the second column of table IV.

TABLE IV
FPGA COMPONENTS LATENCY, POWER AND NORMALIZED ENERGY

Latency Latency Energy Ratio Energy Ratio
Component Power FHD image 100x100 matrices FHD Image 100x100 matrices

(watt) (� sec) (� sec) Ecomp/Eacc(%) Ecomp/Eacc(%)
GPPU 0.61246 25 25 0.014440 0.143751

GATT 0.18820 2322 2 0.416469 0.003071

Image filter 1.00822 104074 N/A 100 N/A

Matrix multiplier 0.94412 N/A 11164 N/A 100

The time duration that each IP component is active, was
reported by real hardware AXI counters/timers instantiated in
the design. Hence, table IV summarizes the results of energy
assessment for our implemented design. The overhead of the
GPPU in terms of energy is negligible, only 0.14% for small
jobs (i.e., small matrices) and the overhead of GATT, in the
STM method, is only 0.41% for large jobs (i.e., FHD image
processing). Notice that the power consumed in the FPGA
I/O pins and the corresponding TLX interface is not included,
since it is the same across all methods.
C. Device Utilization Results

Figure 17 shows the utilized area of the hardware compo-
nents. The GPPU blocks (including GATTs) occupy 29%, the
image filter accelerators occupy 49% and the matrix multipli-
cation accelerator occupies 7% and operate in 100MHz.

GPPU
12%

GATT (x5)
17%

TLX400-IF &
Clocks
15%

Image Filter (x4)
49%

Matrix Multiplier
7%

Accs
56%

Device Utilization

Fig. 17. Area cost (%) of each component and of the full acceleration system
in the FPGA; Slice LUTs include both LUTs as logic and as memory, totaling
57906 LUTs. The GPPU includes also 16 BRAMs, the scheduler 16, the
Image Filters 83 and the Matrix Multiplier 32 BRAMs.

D. Discussion
By using the GPPU framework, the distributed nature of

queue operations, such as queue allocation, packet prepara-
tion and launching without OS system calls, together with

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2019.2907912

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TOMOUTZOGLOU et al.: EFFICIENT JOB OFFLOADING THROUGH HARDWARE-ASSISTED PACKET-BASED DISPATCHING 13

hardware-assisted dispatching and batch-mode offloading en-
able shorter delays in job dispatching to hardware accelerators.
While one dimension in achieving energy efficiency and
optimal performance is through the optimization of special-
purpose hardware accelerators, another important dimension is
the efficient interfacing, in terms of software and hardware, of
user applications to such systems. Through providing a unified
virtual address space among the diverse computational units of
a system, the programmer’s productivity is greatly improved;
all subtle interfacing, resource monitoring and scheduling to
the accelerators is abstracted by the AQLSM. The benefit of
GPPU to provide a unified packet-based API involves also
limitations in terms of delay to de-capsulate packets and
program the accelerator with the domain-specific parameters.
As the level of heterogeneity between the hardware acceler-
ators which are attached to a single GPPU increases, so is
the complexity incurred for the GPPU. Further, the GPPU
currently is not designed to decide which processes deserve
access to the accelerator and for how long.

By scaling the number of queues as available resources
for the applications, the GPPU can bring significant perfor-
mance improvement only if more accelerators are integrated
since the GPPU dispatch latency is orders of magnitude less
compared to accelerator latency (see figure 12). The support
of multiple independent queues incurs queue management
and synchronization, which requires negligible complexity in
both hardware and software components and most importantly
incurs little perturbations among the different applications.

To maximize the system throughput co-located applications
to shared accelerators with shared memory are examined
in various works; by performing OpenCL kernel execution
scheduling authors in [36] propose balancing of performance
degredation. Recently, CuMAS [37] offers automatic over-
lapping of data transfers and kernel executions, but it fo-
cuses on scheduling multiple CUDA applications, rather than
scheduling of a single application’s data transfers. Scheduling
is an additional direction by which the GPPU infrastructure
can similarly be exploited to control system utilization or
resource interference and prioritization. We intend to examine
the applications’ behavior and the impact of different GPPU
scheduling algorithms to the system in future work.

SMP-based offloading delivers the best performance across
scaling number of jobs, CPU type and accelerator type (single
or multi-threaded, image filtering or matrix multiplication).
This is due to the GPPU framework and mainly because
the SMP strategy is free from any virtual-to-physical non-
contiguous translation process. However, the downside is that
we currently do not support memory management for the
reserved data partition for such operation; a fixed-size memory
region is statically assigned to each queue for the lifetime
of the job. The STM strategy allows for full exploitation of
system memory without the overheads of IOMMU address
translation. The AQLSM runtime enables transparent adoption
of either SMP or STM method and essentially removes the
overhead of kernel calls since the only interaction with kernel-
level driver occurs only in the initialization phase.

In the scope of GPGPU execution paradigm to take advan-
tage of shared virtual memory (SVM) key feature across the

CPU and the GPU, recent research proposed improvements
inside page walk schedulers, necessary in reducing address
translation overheads [38]. None of other schedulers i.e.,
sophisticated wavefront and memory controller schedulers
attempt to tackle these overheads. The researchers apply
batching of page table walk requests and larger IOMMU
buffer size, which determines the size of the lookahead for
the scheduler. For custom accelerators equipped with IOM-
MUs, recent works [39] propose to offload TLB misses to
the page walker of the host core MMU, which effectively
provides a unified virtual memory to accelerators but in a very
intrusive way (requiring hardware modifications). Moreover,
as SVM supports zero-copying which allows to pass only
pointers between CPU and GPU for packet-based data access,
it nevertheless requires using a separate memory allocator
(e.g., clSVMAlloc()) instead of standard malloc() [40]. Ad-
ditionally, frequent launch and teardown incurs overheads
due to execution of heavyweight synchronization instructions
to initialize the context registers at start and to make the
results visible to the CPU side at teardown. To address the
limitations of the zero-copy and memcpy approaches, more
recent solutions introduce new memory hierarchy in multiGPU
environments and extensions of the MOESI protocol [41]. As
accelerators have now become first-class compute citizens,
instead of employing such sophisticated techniques, unified
memory addressing feature can provide great advantages with
our proposed strategies which at the same time expose a much
easier programming model.

VI. CONCLUSIONS

The key to exploiting accelerator-rich architectures is the
efficient offloading of jobs; first, this involves architectural
simplifications through providing support for devices’ virtual
address space without additional cost of IOMMUs and second,
efficiency involves removing traditional OS system calls while
at the same time providing a highly easy API and light runtime
at the programmer side.

We have introduced the GPPU to support efficient com-
munication between CPUs and accelerator components (pro-
grammable like GPUs, or custom hardware accelerators). The
two GPPU core benefits are programmability simplification
and communication latencies reduction. The developed GPPU
is a hybrid component comprised of both mechanisms in hard-
ware and in software, which facilitate efficient job dispatching.
By exploiting user-level queuing, workload dispatching to
hardware accelerators allows the removal of drawbacks related
to copying objects through the operating system calls. We
presented an optimized GPPU hardware that includes data
structures supporting: (i) scaling number of queues, which
are maintained in unified system memory space, (ii) con-
solidation of applications’ scattered data that reside in non-
contiguous memory space offering a contiguous device address
space (thus eliminating the need of IOMMU for peripheral
devices), (iii) synchronization mechanisms to achieve race-
free sharing of multiple threaded applications that offload jobs
to accelerators, and, (iv) hardware support for dispatching to
hierarchical organization of accelerators. In addition, we de-
veloped the AQLSM Runtime which complements the GPPU

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2019.2907912

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, XXX 2019

innovative hardware and exposes an efficient programming
layer to applications by reducing communication latency and
programmability barrier. We believe that our GPPU infras-
tructure brings a homogenizing hardware layer to diverse
accelerating components and a runtime to permit applications
to be productively targeted to heterogeneous architectures
while utilizing the available accelerators in an optimized way.

REFERENCES

[1] N. Brookwood, “AMD fusion family of APUs: Enabling a
superior, immersive PC experience,” 2010. [Online]. Available:
www.amd.com/Documents/48423 fusion whitepaper WEB.pdf

[2] HSAFoundation, “HSA platform system architecture specification,” re-
vision 1.1, 21 Jan 2016.

[3] Y. Yang, P. Xiang, M. Mantor, and H. Zhou, “CPU-assisted GPGPU on
fused CPU-GPU architectures,” in Proc. of the IEEE 18th Int’l Symp.
on High-Perf. Comp. Arch., 2012, pp. 1–12.

[4] M. S. Orr et al., “Fine-grain task aggregation and coordination on
GPUs,” in 41st Ann. Int’l Symp. on Comp. Arch., 2014, pp. 181–192.

[5] J. Shen, J. Fang, H. Sips, and A. L. Varbanescu, “Performance gaps
between openMP and openCL for multi-core CPUs,” in Proc. of the
41st Int’l Conf. on Par. Proc. Works.(ICPPW), 2012, pp. 116–125.

[6] T. Ramashekar and U. Bondhugula, “Automatic data allocation and
buffer management for multi-GPU machines,” ACM Trans. Archit. Code
Optim., vol. 10, no. 4, pp. 60:1–60:26, Dec. 2013.

[7] T. B. Jablin et al., “Dynamically managed data for CPU-GPU architec-
tures,” in 10th Int’l Symp. on Cod. Gen. & Opt., 2012, pp. 165–174.

[8] C. Augonnet et al., “StarPU: A unified platform for task scheduling
on heterogeneous multicore architectures,” Concurr. Comput.: Pract.
Exper., vol. 23, no. 2, pp. 187–198, Feb. 2011.

[9] I. Gelado et al., “An asymmetric distributed shared memory model for
heterogeneous parallel systems,” SIGPLAN Not., vol. 45, no. 3, pp. 347–
358, Mar. 2010.

[10] “GMAC-2: Easy and efficient programming for cuda-based systems,”
NVIDIA GPU Tech Conference GTC 2012, May 14-17, 2012.

[11] CUDA, “NVIDIA CUDA programming model.”
[12] Y. S. Shao et al., “Toward Cache-Friendly Hardware Accelerators,” in

Proc. of the Sens. to Cloud Arch. Works. (SCAW), 2015.
[13] B. Wile, “Coherent accelerator processor interface (CAPI) for POWER8

systems, www-304.ibm.com/webapp/set2/sas/f/capi/home.html.”
[14] Freescale, “MSBA8100 baseband accelerator, 2008.”
[15] Analog, “ADSP-SC58x and ADSP-2158x series.”
[16] Intel, “Enabling consistent platform-level services for tightly coupled ac-

celerators.” [Online]. Available: www.intel.com/content/dam/doc/white-
paper/quickassist-technology-aal-white-paper.pdf

[17] Intel, “Intel quickassist technology, performance optimization guide,”
Num 330687, Rev 1.0, Sep. 2014.

[18] Y. Fujii et al., “Data transfer matters for GPU computing,” in Proc. of
the 2013 International Conference on Parallel and Distributed Systems
(ICPADS ’13), 2013, pp. 275–282.

[19] J. Cong et al., “Architecture support for accelerator-rich cmps,” in Proc.
of the 49th Ann. Des. Aut. Conf., 2012, pp. 843–849.

[20] F. Ji et al., “DMA-assisted, intranode communication in GPU accelerated
systems,” in Proc. of the 14th IEEE Int’l Conf. on High Perf. Comp. and
Comm. (HPCC), 2012, pp. 461–468.

[21] D. Mbakoyiannis, O. Tomoutzoglou, and G. Kornaros, “Energy-
performance considerations for data offloading to fpga-based acceler-
ators over pcie,” ACM Trans. Archit. Code Optim., vol. 15, no. 1, pp.
14:1–14:24, Mar. 2018.

[22] A. Kegel et al., “IOMMU: Virtualizing IO through IO memory man-
agement unit (IOMMU),” ser. ASPLOS ’16 Tutorials, 2016.

[23] G. Kornaros et al., “I/O virtualization utilizing an efficient hardware
system-level Memory Management Unit,” in Proc. of the 2014 Int’l
Symp. on System-on-Chip (SoC), Oct 2014, pp. 1–4.

[24] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural support for
address translation on GPUs: Designing memory management units for
CPU/GPUs with unified address spaces,” in Proc. of the 19th Intl Conf.
on Arch. Sup. for Prog. Lang. and Op. Sys., 2014, pp. 743–758.

[25] J. Power, M. D. Hill, and D. A. Wood, “Supporting x86-64 address
translation for 100s of GPU lanes,” in IEEE 20th Int’l Symp. on High
Perf. Comp. Arch., 2014, pp. 568–578.

[26] G. Kornaros and M. Coppola, “Enabling efficient job dispatching in
accelerator-extended heterogeneous systems with unified address space,”
in 30th Int’l Symp.on Comp.Arch. & High Per.Comp.(SBAC-PAD), 2018.

[27] O. Tomoutzoglou, D. Bakoyannis, G. Komaros, and M. Coppola, “Effi-
cient communication in heterogeneous SoCs with unified address space,”
in 11th Int’l Symp. on Rec. Com.-centric SoC, Jun 2016, pp. 1–6.

[28] ARM, “ARM system memory management unit architecture specifica-
tion,” 2016, SMMU architecture version 2.0.

[29] Advanced Micro Devices, Inc., “AMD I/O virtualization technology
(IOMMU) specification,” 2011.

[30] J. Veselý et al., “Generic system calls for GPUs,” in 2018 ACM/IEEE
45th Ann. Int’l Symp. on Comp. Arch. (ISCA), 2018, pp. 843–856.

[31] ARM, “Juno ARM development platform SoC,” 2015, Technical Refer-
ence Manual, Rev. r1p0.

[32] ARM, “ARM LogicTile Express 20MG,” 2014, technical Reference
Manual V2F-1XV7.

[33] ARM, “ARM Corelink TLX-400 network interconnect thin links,” 2013.
[34] Xilinx Inc, “Vivado Design Suite User Guide High-Level Synthesis,”

Nov. 2015.
[35] ARM Corelink. CCI-400 Cache Coherent Interconnect Technical Refer-

ence Manual (ARM DDI 0470), 2013.
[36] S. Lee and C. Wu, “Performance characterization, prediction, and

optimization for heterogeneous systems with multi-level memory inter-
ference,” in IEEE Intl Symp. on Workl. Char.(IISWC), 2017, pp. 43–53.

[37] M. E. Belviranli et al., “Cumas: Data transfer aware multi-application
scheduling for shared GPUs,” in Proc. of the Int’l Conf. on Superc.,
2016, pp. 31:1–31:12.

[38] S. Shin et al., “Scheduling page table walks for irregular gpu applica-
tions,” in 45th Ann. Int’l Symp. on Comp. Arch., 2018, pp. 180–192.

[39] Y. Hao, Z. Fang, G. Reinman, and J. Cong, “Supporting address
translation for accelerator-centric architectures,” in 2017 IEEE Int’l
Symp. on High Perf. Comp. Arch. (HPCA), Feb 2017, pp. 37–48.

[40] Y. Go et al., “APUNet: Revitalizing GPU as packet processing accel-
erator,” in Proc. 14th USENIX Conf. on Net. Sys. Des. & Impl., 2017,
pp. 83–96.

[41] A. K. Ziabari et al., “UMH: A hardware-based unified memory hierarchy
for systems with multiple discrete GPUs,” ACM Trans. Archit. Code
Optim., vol. 13, no. 4, pp. 35:1–35:25, Dec. 2016.

Othon Tomoutzoglou received both the MSc. and
the BSc. degree from the Technological Educational
Institute of Crete, Heraklion, Greece in 2014 and
2016 respectively. He is currenly a Design Engi-
neer in research projects with the Technological
Educational Institute of Crete. His current research
interests include multicore and heterogeneous archi-
tectures, embedded and reconfigurable systems, RTL
Design, high-level synthesis and operating systems.

Dimitris Mbakoyiannis received the BSc. de-
gree from the Technological Educational Institute of
Crete, Heraklion, Greece in 2014. He is currenly
a Design Engineer in research projects with the
Technological Educational Institute of Crete. His
current research interests include heterogeneous ar-
chitectures, embedded and reconfigurable systems,
high-level synthesis and operating systems.

George Kornaros is an Assistant Professor of
Informatics Engineering Dept. at the Technological
Educational Institute of Crete, Greece, where he
leads the Intelligent Systems and Computer Archi-
tecture Group. His research interests include multi-
core architectures, high speed communication ar-
chitectures, and embedded and reconfigurable sys-
tems. Kornaros has designed single chip network
processors for the industry, published more than 60
scientific articles, and edited the book “MultiCore
Embedded Systems”. He holds three patents and is

a member of the Technical Chamber of Greece.

Marcello Coppola is the technical director at
STMicroelectronics and has more than 20 years of
industry experience focused on developing break-
through technologies. He has a graduate degree
in computer science from the University of Pisa,
Italy. His research interests include HPC, IoT for
education, cyberphysical systems, 5G, automotive
technologies, and multi-core and many-core SoCs.
Coppola has coauthored more than 50 scientific pub-
lications and held various roles in top international
conferences and workshops. He holds 26 patents and

is involved in multiple European research projects.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2019.2907912

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

