
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, XXX 2019 1

Efficient Job Offloading in Heterogeneous Systems
through Hardware-assisted Packet-based

Dispatching and User-level Runtime Infrastructure
Othon Tomoutzoglou∗, Dimitris Mbakoyiannis∗, George Kornaros∗, and Marcello Coppola†

∗Inform. Eng. Dept., Technological Educational Institute of Crete, Iraklio, GR †STMicroelectronics, Grenoble, FR

Abstract—Emerging heterogeneous systems architectures in-
creasingly integrate general-purpose processors, GPUs, and other
specialized computational units to provide both power and
performance benefits. While the motivations for developing
systems with accelerators are clear, it is important to design
efficient dispatching mechanisms in terms of performance and
energy while leveraging programmability and orchestration of
the diverse computational components. In this article we present
an infrastructure composed of a hardware, General, Packet-based
Processing-dispatching Unit, named GPPU, and of an associated
runtime that facilitates user-level access to GPPU objects such
as packets, queues and contexts. Hence, we remove drawbacks
of traditional costly user-to-kernel-level operations, low-level ac-
celerator subtleties that hinder programming productivity, along
with architectural obstacles such as handling accelerators’ unified
virtual address space. We present the design and evaluation of
our framework by integrating the GPPU infrastructure with
data streaming type accelerators, image filtering and matrix
multiplication, tightly coupled to ARMv8 architecture via unified
virtual memory. Under scaling workload our proposed dispatch-
ing methods can deliver 3.7× performance improvement over
baseline offloading, and up to 4.7× better energy efficiency.

Index Terms—Packet-based dispatching, CPU-Accelerators
unified address space, Hardware-assisted offloading, User-level
embedded systems dispatching

I. INTRODUCTION

IN the last decade together with the explosion of integrating
multiple cores in a single chip, an architectural trend is

the growing prominence of heterogeneous architectures. As
scaling the number of processors does not always translate
to linear speedup, heterogeneous systems aim to unlock the
performance and power efficiency of the parallel hardware
resources including CPUs, GPUs, DSPs, FPGAs, fabrics and
fixed function accelerators in today’s complex Systems-on-
Chip (SoCs). However, even though physically putting to-
gether CPUs, GPUs and other accelerators on the same chip
or platform, the available programming models still consider
them separated.

Different techniques emerge to amortize heterogeneity in
terms of architectural differences and programmability. Mul-
tiple processing units with their own memory may incur
potentially penalty to access the data if these are not in close
proximity, especially if they reside in a different address space.
To tackle this challenge fused architectures, that is multi-
core CPUs and many-core GPUs are integrated on a single

Manuscript received September 1, 2018; revised December 31, 2018.
Corresponding author: G. Kornaros (email: kornaros@ie.teicrete.gr).

chip with a shared on-chip L3 cache, to produce what AMD
calls accelerated processing units (APUs) [1], providing the
opportunity to leverage the high computational power of the
GPUs. In addition, inspired by these architectures Heteroge-
neous System Architecture (HSA) Foundation [2] proposes
a unified virtual address space and coherent shared memory
spanning the APUs, enabling user-level task queues to reduce
offloading latency.

Applications in heterogeneous architectures take advantage
of hardware accelerators and GPUs, by offloading compu-
tations, intensive portions of their execution to hardware
accelerators, either fixed-function or programmable such as a
GPU. These offloaded computation tasks are referred as jobs
in this article. A job consists of two parts, the kernel, that is,
the executable code for a programmable accelerator, and the
corresponding data. When the CPU dispatches a task to the
hardware accelerator or to the GPU, it is usually necessary to
pass through an OS service and an OS kernel driver before
finally reaching the final target, which causes non-negligible
performance degradation. As accelerators commonly execute
outside the processor, they usually lack access to processor’s
virtual address space and invoking the accelerator may require
pinning data in memory and translating virtual addresses in ad-
vance of launching the accelerated computation. Researchers
have proposed single CPU thread to assist in prefetching
data for many GPU threads [3] or channels, i.e., multi-
producer/multi-consumer data queues that aggregate fine-grain
work items before scheduling to the GPUs [4]. Furthermore,
to make effective use of multi-core CPUs and GPUs, toolkits
offer a different approach to parallelization [5], exploiting for
instance an intuitive fork-join model and enabling locality
friendly coarse-grained parallelism (OpenMP), or expressing
fine-grained parallelism (OpenCL), enabling for example, im-
plicit or explicit vectorization at the compiler level.

In this work we address the optimization of heterogeneous
computing in terms of performance and energy consumption.
Heterogeneous refers to platforms that use more than one
kind of processors and/or specialized fixed-function or pro-
grammable accelerators. We built an innovative infrastructure
to offload, i.e., dispatch, computational intensive jobs from the
host processor to the heterogeneous computation nodes, which
infrastructure comprises a hardware-assisted Generic Packet
Processing Unit (GPPU) and a corresponding runtime, here-
after called as Architected Queuing Language-aware System
Manager (AQLSM). The GPPU allows a programmer to write

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2019.2907912

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, XXX 2019

applications that seamlessly integrate different computing units
removing today’s hurdles such as separate memory spaces
between CPU and non-virtualized hardware accelerators. In
particular, the contributions of this work are summarized next.
The GPPU hardware and runtime software components:
• offer user-level offloading to computation nodes in a

system without costly OS system calls
• allow sharing of virtual address space between all pro-

cessing components in the system (compatible to the HSA
initiative) in order to remove the need of explicit copies;
enable efficient data sharing between host CPU and hard-
ware accelerators while removing the need of a complex
Input/Output Memory Management Unit (IOMMU)

• accelerate the dispatching process with dedicated
hardware-assisted unit which hides cumbersome configu-
ration and monitoring of diverse attached accelerators

• remove the programming complexity while featuring a
unifying way to optimize data and code transfers across
different heterogeneous processing units and thus making
applications to be easily re-targeted to different platforms

Our GPPU infrastructure assumes applications that are
launched on the host CPU (or cluster of CPUs) and inter-
mittently offload jobs to an accelerator. Sharing opportunities
arise due to two reasons. First, a job might have completed an
offload and is running on the host CPU leaving the accelerator
free. Second, a job offload may not be using all of the cores
on the accelerator, or a number of accelerators which are
attached as sub-nodes to a GPPU, therefore allowing another
job to potentially use the free accelerator cores. The focus
of this work is not the optimal partitioning and mapping
of an application to the multiple heterogeneous computing
units. In addition, the programmer or the OS orchestrator
must evaluate when an offload computation will outperform
one that is local by forecasting the local cost (execution time
and energy consumption for computing locally) and remote
cost for computing remotely and transmission time for the
input/output of the computation to/from the remote accelerator.

The rest of this paper is organized as follows. In section II,
we introduce previous works on improving programmability
and offloading costs in Heterogeneous SoCs. In section III, we
give an overview of our work. Section IV presents the design
and Implementation of the GPPU infrastructure. In section V
we evaluate our proposals in terms of performance and energy
consumption and finally, we conclude our work in Section VI.

II. RELATED WORK

Optimizing communication and automatic data management
have been addressed in the context of CPU-GPU program co-
execution, first, through using compiler-assisted techniques to
transfer data to the appropriate memory space [6] [7]. In the
StarPU runtime [8], applications submit computational tasks,
forming a task graph, with CPU and/or GPU implementations,
and StarPU schedules these tasks and associated data transfers
on available CPUs and GPUs. StarPU optimizes data transfers
using prefetching and overlapping. In the same scope semi-
automatic techniques, such as Global Memory for Accelerators
(GMAC) require programmers to add annotations [9]. By
sharing the virtual address space of CPU and accelerators,

researchers have proposed a user-level library, GMAC, to
make heterogeneous systems easier to program while reducing
performance penalties [10]. It is not though guaranteed to
successfully map the accelerator’s memory to the same range
of virtual memory address space. Unified Virtual Addressing
(UVA) [11] abstracts away from the programmer the actual
location of data, whether on any of the GPUs or on the CPU.
On top, we propose methods to eliminate time-consuming
operations such as user- to kernel- space data transfers, kernel
space synchronization, queue management and dispatching.
Industrial Accelerators Coupling. Fixed-function accelera-
tors commonly use scratchpad memories and Direct Memory
Access (DMA) engines or caches. Cache-based memory hi-
erarchy is inefficient for bulk data movement in I/O bound
applications, but can be more efficient at on-demand, fine-
grained data transfer for applications, and depending on the ap-
plications memory access patterns [12]. In industry, IBM intro-
duced the Coherent Accelerator Processor Interface (CAPI) on
POWER8 systems to provide a high-performance solution for
implementing client-specific computation-heavy algorithms on
FPGAs [13]. Additionally, the Multi-Accelerator Platform
Engine for Baseband (MAPLE-B) consists of a programmable-
system-interface which is a programmable controller with
DMA capabilities and signal-processing accelerators attached
using an internal interface [14] [15]. Intel proposes the
QuickAssist Technology Accelerator Abstraction Layer to sim-
plify the use and deployment of tightly-coupled accelerators
[16] [17] via the Front Side Bus, but mainly for offloading
computationally intensive compression and encryption tasks.
By using a reduced functionality or “bare-bone” Application
Programming Interface (API), named dataplane API, or by
batching requests, Intel aims to reduce offload latency.
Data Transfers Optimizations. To tackle offloading over-
heads, researchers have also proposed dynamically aggregating
asynchronously produced fine-grain work into coarser-grain
tasks leveraging the GPU’s control processor to manage those
queues [4]. Optionally, engineers develop hardware-assisted
DMA and I/O read and write access methods along with
on-chip microcontrollers inside the GPU to offer effective
solutions in terms of reducing the data transfer latency for
concurrent data streams [18]; Fujii et al., [18] showed that
direct I/O operations are faster than using DMA controllers for
small data transfers. Hardware support for optimizing different
ISA-based heterogeneous systems is also proposed in a variety
of contexts, by accelerator management to mitigate memory
latencies during data transfer [19], or by optimizing intra-
node communication using DMA assistance [20]. Similarly,
in [21] we proposed an open-source framework for optimized
data transfers over PCIe-attached accelerators via exploiting
scheduling and parallelized, pipelined DMA transfers, all
controlled by hardware customized components at the FPGA
fabric side. However, in the work in this article we introduce
packet-based dispatching for tightly-coupled accelerators with
a user-level runtime which seamlessly integrates different
acceleration units.
Device Virtual Address Space Access. Modern systems
are equipped with IOMMUs [22] [23], to support address
translation for loosely-coupled devices, including customized

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2019.2907912

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TOMOUTZOGLOU et al.: EFFICIENT JOB OFFLOADING THROUGH HARDWARE-ASSISTED PACKET-BASED DISPATCHING 3

accelerators and GPUs. To provide access to virtual address
space some GPUs include highly complex IOMMUs; 4-ported
private TLBs and improved page walk scheduling have been
proposed [24], while authors have also introduced a highly
threaded page walker to handle bursts of TLB misses [25].
Instead, we propose a novel mechanism that is totally free
from an IOMMU component, by taking advantage of the
processor’s translation functionality also for the accelerators,
and by using a simplified address translation mechanism.
Earlier, we introduced the concept of packet-based hardware
dispatching in [26], which integrates a runtime based on
kernel-space interprocess communication facilities. A key-
goal of this work is to support a fully distributed user-
space runtime (via ARMv8 atomic primitives) and offer two
dispatching alternatives to remove IOMMU overheads: (a)
use a dedicated system memory partition for data and queue
contexts (as in [26]) and, (b) utilize the full-system memory,
while exploiting the CPU’s MMU to deliver a unified virtual
memory view to the accelerators as well.

III. JOB DISPATCHING TO ACCELERATORS

To achieve efficient dispatching the proposed infrastructure
consists of the Generic Packet Processing Unit (GPPU) and
of the Architected Queuing Language-aware System Man-
ager (AQLSM) runtime, which work synergistically to enable
workload dispatching in a packet-based fashion and, allow the
programmer to handle hardware accelerators in a unifying,
transparent and low complexity way. The GPPU controls one
or even multiple different accelerators (figure 1) and abstracts
the diversity of the functionality of these custom accelerators
by presenting a single general-purpose API to the host CPU
and hiding the accelerators details.

The design of the GPPU as a hardware component addresses
the following objectives.
• enable all computing units in a heterogeneous system to

operate in their own virtual address space
• allow direct interfacing to user space applications without

expensive system calls
• offload the CPU from scheduling of dispatching opera-

tions and monitoring of accelerators
• seamless dispatching, unaware of the type of the comput-

ing unit; i.e., the CPU can dispatch a job to the GPU, or
the other way round

CPU

System Memory

GPU / Hardware

Accelerator

GPPU

kernel data queues

J1
J2 J3

App1

write index read index

Fig. 1. Dispatching jobs (kernels and data) from CPU to accelerators
and from accelerators to CPU through using the GPPU in a packet-based
communication and user-level accessible circular queues

The supported programming model defines job offloading
through command queue objects. These queues are allocated at

runtime and they are accessible by applications running on the
host CPU, at user level, in applications’ virtual address space.
Each queue contains packets, i.e., commands, as defined in
specifications of HSA Foundation [2] (AQL packets). Both
queues and packets are allocated and de-allocated by applica-
tions through the AQLSM runtime infrastructure. Queues are
semi-opaque objects for which the AQLSM maintains a queue
context, i.e., circular buffer related information. The visible
part of a queue context includes queue type (i.e., allocated
to a single application or shared by multiple applications),
doorbell signal, queue size, read and write indexes and a
queue index. The invisible part of a queue context contains
sensitive and error-prone information, i.e., the queues and
packets virtual and physical addresses, which are accessed
only by the AQLSM (CPU), the GPPU and the accelerators.
A set of queues are pre-assigned to a particular GPPU and
the AQLSM allocates each queue to user requests. The GPPU
on the other hand is responsible for the binding of a queue to
an available accelerator from the set of accelerators which are
attached to a GPPU; this binding is independent of the kind of
accelerator. The command packets are 64-byte fixed-size data
structures following the kernel dispatch packet format [2].

As shown in figure 1, the GPPU performs the following
functions: (i) it manages requests from user-level applications
to offload jobs to accelerator engines; the requests are per-
formed in the form of command packets which are placed
in circular queues until the GPPU serves these queues, (ii) it
mediates the process to offload jobs (kernel and data) from
user application memory space to a hardware accelerator and
in the opposite direction, to monitor the accelerator process
and notify the application of the outcomes of these jobs.

A user-level queue is a shared memory space between CPU
and GPPU and implements a one-way communication, either
from the CPU to the accelerator, or from the accelerator to
the CPU, via the GPPU. Figure 2 depicts different options,
which a user application may utilize to offload workload to
the accelerators; the dark shaded block (ACC2) indicates an
accelerator of different functionality compared to the light
shaded block (ACC1). In this article we opted for option (c),

GPPU

(a)

Application

ACC1

ACC2

GPPU

Application1

ACC1

ACC2

GPPU

Application1

ACC1

ACC2

GPPU1

Application2

(c) (d)

GPPU

(b)

Application

ACC1

ACC2

Application2
Fig. 2. Feasible offloading methods enabled by the GPPU

and we intend to evaluate queue sharing in future work. Both
CPU and GPPU maintain an internal state to enable race-free
accesses to read and write indexes of the command queue
in a consistent way. A complete offload operation involves
the launch, active and completion phases. The launch phase
includes the operations to fill and successfully enqueue a
packet; then, during the active phase, the GPPU selects an

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2019.2907912

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, XXX 2019

eligible packet and processes its contents to submit the job to
the appropriate accelerator. Finally, in the completion phase
the GPPU notifies the application of the acceleration outcome.

The CPU initializes a queue context in a local memory
(register file) inside the GPPU to configure the communication
protocol parameters (writeIndex, readIndex, queueSize). Then,
a user application is allowed to enqueue command packets
to the ring buffer queue using the unique queue index and
packet index. A new packet index is obtained by calling the
GPPU runtime, i.e., the AQLSM. The application uses this
queue unique index to find the available packet within the ring
buffer. This is done through the AQLSM API. Internally, the
AQLSM creates the appropriate virtual address, called userVA.
The application, populates the packet including parameters and
pointers to the workset that needs to offload. The workset
involves the kernel code and the data to process when a
programmable accelerator is used, or only the data when a
fixed-function hardware accelerator is connected. Finally, the
application creates a logical signal, called doorbell to notify
the GPPU that the packet is ready to be processed. A signal
can be actually considered a shared memory location that
contains an integer, which when modified triggers an event in
the GPPU. The GPPU will dispatch all packets from a circular
queue until a barrier packet is identified. It is not necessary
for all the packets which have been dispatched to reach their
completion phase before more packets from the same queue
can be launched.

When the doorbell has been received, the GPPU retrieves
the packet from the head of the queue, which is located at
the readIndex. At this point the packet is processed by the
GPPU on the basis of the packet type. We support two types
of packets: the dispatch which describes a new job, and the
barrier, which includes a command for the GPPU. In case of
a dispatch packet, the pointers in the packet are extracted to
enable the wake up of the accelerator. When the accelerator
has completed processing, the GPPU can update the readIndex,
and can set the packet as invalid. Finally, the signal included
in the packet will be reset by the GPPU, so the application in
the host can be notified to use the outcome data produced by
the accelerator. Of course the application can asynchronously
submit multiple jobs to the same queue, either one-by-one or in
a batch and continue its operation . The GPPU is associated
with multiple AQL queues, independently of the number of
accelerators.

A. System Memory Management Using a GPPU

Applications running on the host CPU can offload com-
putation kernels onto a customized compute engine or GPU
to get accelerated. Depending on the framework used (i.e.,
OpenCL/GL, CUDA) the offload process requires memory al-
location, explicit kernel and data copying from the CPU to the
accelerator address space, kernel launch, data copying from the
accelerator to the CPU, and freeing of the allocated memory
space. In modern HSA-style architecture the convenience of a
unified virtual address space removes the need for maintaining
two copies of the same data in both host and device address
spaces. By simply passing a pointer to the shared data in the
virtual address space to and from the accelerator essentially

eliminates unnecessary and costly copies. In [27] we can see
the benefits of using unifying address space in heterogeneous
SoCs. However, since accelerators actually need to access
the data in their physical memory space a virtual-to-physical
address translation is required. Modern SoCs have introduced
hardware IOMMUs to enable devices to access the virtual
memory that the host CPU supports [28] [29]. Even though
recent advances in IOMMU designs enable translation caching
to compensate for the long latencies of page table walking,
the silicon cost of the IOMMU along with its performance
overhead creates a significant challenge for loosely-coupled
accelerator architectures. In the scope of accessing CPU from
accelerators, recently Vesely et al., [30] proposed to designate
a portion of memory as the syscall area for GPU to store sys-
tem call arguments and information and then GPU to interrupt
the CPU (by relying on the ability of the GPU to interrupt the
CPU) and send the ID number of the wavefront issuing the
system call. We envision a more structured way for this process
using packet-based communication to the CPU and directly
notify user-space application in contrast to OS service as
in [30]. In this work we have developed both interrupt-driven
and CPU-polling service to identify acceleration completion.

In addition, the proposed GPPU framework requires also to
expose the physical address space of queues and corresponding
context to the virtual memory of the applications. Hence,
the unified virtual address space between host CPU, GPPU
and accelerators requires an efficient mechanism for virtual
to physical address translation. In this section we present
two solutions developed to tackle memory management issues
in this scope. Both techniques are the only ones known to
the authors that totally eliminate the complexity and incurred
overheads of using IOMMUs. In contrast to implementing
a dedicated IOMMU for accelerators, where synchronization
with the MMU of the host CPU is needed on page fault
handling, our approach requires no additional support for
system-level correctness issue.

1) System Memory Partitioning: One option to facilitate
memory management in SoCs that integrate loosely-coupled
accelerators is to reserve one partition of the physical memory
for communicating data between user applications and acceler-
ators. We call this approach as SMP method hereafter. The OS
lives in the rest of the physical memory. Applications can ac-
cess this reserved partition with the aid of the AQLSM and OS
through the mmap() system call, which call is used only at the
pre-offloading initialization phase. Even if the downside is the
non-optimal utilization of the physical memory, nevertheless,
devices can directly access this partition free from virtual-to-
physical translations, while the applications can also access
this memory through the AQLSM that does the mapping to
applications virtual address space.

As figure 3 shows, a partition starting from base address
till the high end of system memory is dedicated to store the
queues and the applications data. This memory splitting occurs
during the boot time. When an application requests a queue via
aqlsm queue create() of the AQLSM API, then the AQLSM
exports a virtual address pointer (userVA) to the queue data
buffer by simply adding the appropriate offset to the partition
base address.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2019.2907912

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TOMOUTZOGLOU et al.: EFFICIENT JOB OFFLOADING THROUGH HARDWARE-ASSISTED PACKET-BASED DISPATCHING 5

MMU

System Main
Memory

CPU Device
Virtual

Address

Physical
Address Physical Address

Device Address

Operating System

Physical space mapped by
the OS to App Virtual Space

User App

Op

Virtual
Address
Space kernel

Device/
Virtual

Address
Space

n OS Logical Partition Shared Logical
Partition

offsetA

pp mmap(base+offsetA)

base

Queues

Fig. 3. Dispatching kernels to accelerators through the GPPU infrastructure in
SMP fashion; the OS virtualizes the left shaded partition applications, while
the AQLSM runtime utilizes the right (higher) memory partition for queues
and application data for offloads

All queue data buffers are maintained in a logical partition
that starts at the base address of the reserved partition, while
next lies the logical partition for the application data. Figure 3
shows an example where an application acquires a queue
object and will use a logical partition for the application data
which corresponds with this particular queue. The AQLSM
exports this data partition that is located at offsetA in the
application virtual address space. Notice that by using mmap()
call the virtual address returned corresponds to physically
contiguous address space.

The GPPU on the other hand that works using physical
addresses, accesses the same objects, i.e., queues, kernels
and data, through using the physical addresses which are
formed by adding the memory partition’s base address and
the corresponding offset. For instance, to access a particular
packet, the GPPU uses the queue index (queueIndex) and the
packet index (packetIndex), which are absolute numbers and
calculates the physical address (PA) of the packet as follows.

PApacketIndex = basePA + queueIndex ∗ MaxQueueSize+
packetIndex ∗ PacketSize

where MaxQueueSize represents the maximum queue size
supported in the system. Our SMP approach is clearly straight-
forward and, since the data are physically contiguous, access-
ing them does not undergo any translation and is henceforth
faster. Platform-wise the GPPU decapsulates a packet and
delivers the physical address of the kernel to a programmable
accelerator or of the data to a fixed-function hardware acceler-
ator. This mediation function depends largely on the acceler-
ator’s configuration complexity (e.g., GPU or hardware core)
and interface/interconnect option (PCIe, Infiniband, AMBA).

2) System Memory for User Data: When an application
issues a malloc() system call, then a buffer object is created
that is made available in its own virtual address space as a
contiguous memory area. However, the allocated space may
span physical memory pages that are not contiguous; this
may occur even if the requested buffer size is smaller that
system’s page size, commonly set to 4KB. For instance, in
the context of processing full high definition (FHD), or 1080p,
which is 1920 pixels wide by 1080 pixels tall (2.1 megapixels),
with 32 bits/pixel when loaded at memory 8,294,400 bytes
are required, or 2025 pages of 4KB each. Even though it
is preferable to use physically contiguous pages in memory

both for cache related and memory access latency reasons
this cannot be guaranteed when a user-level application makes
malloc() calls.

The key idea is that in several application domains which
can benefit through accelerating a computational intensive
task, the memory space that is allocated at user space will
be used throughout the offload process. Hence, the virtual
to physical space translation that an IOMMU can perform
during the acceleration process can be done even before the
acceleration begins, since we know beforehand both the source
and the result data buffers. Consequently, instead of using an
IOMMU, the MMU of the CPU can perform the virtual to
physical translation. Essentially, the physical address space
of the non-contiguous space can be identified at kernel level
and in addition, to allocate contiguous space larger than the
page size is also possible at kernel space through using the
dma alloc coherent() or dma alloc noncoherent calls.

To address offload data management for data that are
allocated in system memory the GPPU infrastructure can
employ the SysTem Memory, or STM method, which requires
a Generic Address Translation Table, called GATT hereafter,
as shown in figure 4. In combination with a kernel driver
and AQLSM, the GATT can fetch from the system memory
the translations of pinned pages and program the accelerators
accordingly. The GATT can be programmed to operate in
non-paged mode and in paged mode. The first mode is used
when the data are stored in memory contiguously, therefore
an accelerator’s DMA has to be programmed only once. The
second mode is used when the data span more than one page.
In this case GATT is responsible to configure an accelerator’s
DMA upon interrupt on a per page basis, both for the incoming
and for the processed data stream. Notice that in this second
mode the pages translations are stored in a contiguous buffer
in memory. In the scope of this STM method, the AQLSM

CPU

GPPU

User App RAM

AQLSM
Queues

Tail
Head

Queues

Partition

OS

Partition

QN Q0 Q1

GATTGATT

Buffers in

Pages

Pages

Translation

IRQHW AcceleratorHW Accelerator

CMA

Reserved

Fig. 4. Dispatching jobs to accelerators through the GPPU infrastructure;
the kernel driver with the aid of the host MMU translates the virtual address
space of the data buffers that are allocated at user space and stores them in
the cross-shaded memory buffer, while the GATT mediates to provide the
illusion of a contiguous space to the accelerator

runtime that runs at user space interacts with a kernel space
driver only at the initialization of the offload process. The user
application assigns to the AQLSM runtime to allocate data
buffer and to discover the physical address of this buffer, which
may be fragmented in many pages. This particular driver in
addition to the virtual to physical address translation must
handle cache effects, using standard Linux kernel facilities. If

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2019.2907912

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, XXX 2019

there is no hardware to provide cache coherency, the allocated
memory space must be non-cacheable, or must be flushed or
invalidated before giving control to a hardware accelerator.
The AQLSM runtime fills in the command packet the physical
address of the buffer with the translations and then triggers
the GPPU with the doorbell signal. As shown in figure 4, the
GPPU communicates both with the device to assign a job and
with the GATT to configure it for the lifetime of this job.

IV. GPPU SYSTEM DESIGN

We designed the GPPU infrastructure on an 64-bit ARMv8
ARM Development Platform (ADP) named Juno-r1 [31],
which is extended with the LogicTile 20MG FPGA board [32].
Table I summarizes the SoC features relevant to our design.

TABLE I
OVERVIEW OF ARM JUNO-R1 DEVELOPMENT PLATFORM

Dual cluster Cortex-A57 2MB L2 cache, NEON and FPU,
underdrive: 600MHz, nominal: 900MHz,
overdrive: 1.15GHz

Quad cluster Cortex-A53 1MB L2 cache, NEON and FPU,
nominal: 650MHz

CCI-400 int. interconnect cache-coherent, 128-bit, 533Mhz
NIC-400 ext. interconnect 64-bit, 400MHz, external AXI ports

using Thin-Links cores

The LogicTile utilizes a Xilinx Virtex-7 FPGA, the
XCV2000T device. The platform SoC LogicTile interconnect
is realized through using the ARM TLX-400 Thin-Links AXI
master and slave interfaces inside the LogicTile site [33]. At
the default clock frequency of 61.5MHz, the operating bit rates
are:
• Master interface (CPU-to-LogicTile): 68Mbps in the for-

ward direction, 78Mbps in the reverse direction.
• Slave interface (LogicTile-to-CPU): 246Mbps in the for-

ward direction, 305Mbps in the reverse direction.
The platform SoC runs the ARM Landing Team’s Linux kernel
v4.8 release. Next, we present the baseline design using the
same hardware accelerators as in the GPPU system.

A. Baseline Accelerators

Figure 5 shows the FPGA baseline block design attaining
the goal to realize two different types of hardware accelerators,
which are integrated through a kernel-based driver dispatching.
We developed one hardware accelerator for matrix multiplica-
tion and one for image edge detection using Vivado High-
level Synthesis (HLS) tools [34]; to investigate the impact
of dispatching to multi-threaded accelerators, we instantiated
four image edge detection blocks. We consider each type of
hardware accelerator as an acceleration group.

Table II summarizes their main characteristics. The hard-
ware accelerators communicate via the ARM proprietary Thin-
Links interface with the Juno SoC CCI-400 cache coherent
interconnect [35]. The Juno r1 platform does not support an
IOMMU for LogicTile-hosted components. Hence, the accel-
erators cannot transparently refer to system virtual address
space and they can access only the physical address space.

The key concept in this baseline design is that the source
data have to be copied from user to kernel space in order to be
visible to the accelerators and for the same reason the resulting

6 GB

HW Acc0

Programmable Logic JUNO r1 ADP (LogicTile)

A
X

I4
 I
n
te

rc
o
n
n
e
c
t

DMA Sobel Filter

HW Acc4
DMA Matrix

Multiplier

AXI4 –
 ThinLinks

Bridge NIC-400 External
Interconnect

CCI-400 Cache-coherent
Interconnect

Memory
Controller

Cortex A57
Cluster

L2 Cache

Cortex A53
Cluster

L2 Cache

Linux Kernel v4.8
Page 0

612 MB

412 MB CMA

Reserved 1 GB

Page N

System Memory

Page 1
.
.
.

HW Acc3
DMA Sobel Filter

HW Acc2
DMA Sobel Filter

HW Acc1
DMA Sobel Filter

Fig. 5. Physical organization of the baseline architecture in ARM JUNO R1
equipped with the LogicTile 20MG FPGA

TABLE II
HARDWARE ACCELERATORS CHARACTERISTICS

Functionality Characteristics
Matrix multiplication Integer multiplication, max matrix size 100×100
Sobel edge detection Convolutional image processor with kernels size

3×3, max image size (1920×1080)

data are copied from kernel to user space. The user space
data are located in memory arranged in pages, which may be
non-contiguous. Kernel space data are stored in Contiguous
Memory Allocator’s (named CMA) reserved partition, which
allows for contiguous memory allocation. Data accesses are
coherent between the CPUs and the programmable logic
thanks to the CCI-400, which snoops the CPU caches.

The default kernel configuration provides only 4MB of
contiguous memory space. The maximum contiguous space is
calculated as 2MAX ZONE ORDER−1 ∗PAGE SIZE, where the
page size is 4KB. Thus, by changing the MAX ZONE ORDER
setting in the kernel configuration file from 11 to 13, the kernel
CMA can allocate up to 16MB of contiguous memory space;
this is required to support image filtering of maximum size
(i.e., FHD), one buffer for source and one for outcome data.
Baseline Dispatching Driver: The baseline driver communi-
cates with the hardware cores to configure and offload tasks
to them. The offloading is achieved in the following way.

• the driver allocates two contiguous data buffers in kernel
space using the system’s CMA, one buffer for the source
data and one for the results

• the driver copies the caller’s source data from user to
kernel space via the copy from user() call

• then, programs the accelerator accordingly; notice that the
driver is aware of the physical address of the buffer that
is allocated in the first step

• the driver polls the accelerator to find out if the offloaded
task is completed

• when the offloaded task has completed, the driver copies
the result data from kernel to user space using the
copy to user() call and frees the allocated buffers

The driver establishes synchronous communication when in-
terfacing the hardware accelerators; when an application thread
acquires an accelerator and offloads a job, blocks until job’s
completion. To manage the jobs per acceleration group, the
driver uses logical buffers. The number of buffers is dynami-
cally allocated and can be configured from a single buffer up
to twice the number of accelerator instances inside a group;
namely, the driver can assign up to eight buffers for the Sobel
accelerators and up to two buffers for the matrix multiplication
accelerator.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2019.2907912

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TOMOUTZOGLOU et al.: EFFICIENT JOB OFFLOADING THROUGH HARDWARE-ASSISTED PACKET-BASED DISPATCHING 7

B. GPPU Implementation

We integrated the GPPU with the hardware accelerators in
the LogicTile FPGA to realize a proof of concept heteroge-
neous system with effective packet-based dispatching. Queue
structures reside in system memory while the corresponding
queue context is maintained inside the GPPU as a register file.
The accelerators access the source and outcome data buffers
in system memory using either of the two methods.
• SMP: access directly the reserved applications’ data parti-

tion using physical addresses (through AQLSM runtime);
data buffers are contiguous and cache coherent

• STM: access directly the scattered user pages managed
by the OS with the aid of GATT; data buffers are non-
contiguous and cache coherent

Notice that since CCI400 lacks support for cache coherent
view to the LogicTile link, accelerators access data by using
read transactions as ReadOnce and write transactions as Write-
Unique for the Inner Shareable domain [31], so that data are
not cached locally for future use.

Figure 6 shows the block-level organization of five hardware
accelerators that a GPPU can assign jobs to them through a
set of buffers, named active jobs RAM. This RAM is logically

HW Acc0

Programmable Logic GPPU

ReadIndex
WriteIndex
Doorbell
Active Size
Type

QN

Q0

Q1

Sobel Filter

AXI4 – ThinLinks Bridge

AXI4 Interconnect

Packet Manager

Q.Contexts

Packet
DMA

Packet
RAM

Active Jobs
RAM

S.Filter

M.Mult

Juno R1 ADP System Memory

AXI4 Interconnect

DMA

HW Acc1

Sobel Filter

HW Acc2

Sobel Filter

HW Acc3

Sobel Filter

HW Acc4

Scheduler

Matrix
Multiplier

DMA DMA DMA DMA

.

.

.

GATT

Fig. 6. GPPU architecture; the GPPU controls five hardware accelerators,
four for image filtering and one for integer matrix multiplication.

divided into two partitions, one for the Sobel filter and one
for the matrix multiplication acceleration group. We integrate
eight job buffers for the Sobel filter and two job buffers for
the matrix multiplication. Thus, in case that one accelerator is
occupied by one active job, the GPPU can prepare the next
ready job. A local scheduler abstracts the interfacing to the
hardware accelerators and is in control of sending the jobs and
of monitoring the acceleration process. The number of buffers
to use in the active jobs RAM can be actually configured by the
scheduler, as in the baseline dispatching method. In addition,
in both SMP and STM modes the scheduler configures each
dedicated GATT unit with the job context parameters; during
the SMP mode the GATT operates in non-paged mode while
during the STM mode GATT operates in paged mode.

The GPPU checks for each allocated queue if the doorbell
is active and if the readIndex is different from the writeIndex.
If a buffer is still available out of the buffers that are dedicated
for the requested accelerator, then this job must be dispatched.
Notice that the doorbell signal and the writeIndex are updated
by the AQLSM runtime and are visible by the GPPU, while
the readIndex is visible by the AQLSM and updated by the
GPPU core, to avoid races. When the GPPU identifies that
a job can be dispatched then the GPPU activates a private
DMA engine, which can fetch all eligible packets from the
queue. In the current realization the GPPU fetches a single

packet (packets are retrieved one at a time) and dispatches
it by extracting the fields from the packet that pertain to
the particular accelerator. Fetching multiple packets via using
DMA and processing them with a parallel processing GPPU
gives an obvious advantage, and particularly in offloading
of fine-grain jobs to high-performance or to multi-threaded
accelerators. In favor of the latter case, another design option
of the GPPU is to maintain the queues not in main memory, but
locally inside the GPPU in a scratchpad memory; this option
though, would impose size constraints on the queue and higher
cost in terms of silicon area.

C. AQLSM Runtime
The AQLSM runtime exposes a simple API to the user

and at the same time isolates different user applications and
hides unnecessary complexity. The AQLSM runtime provides
a GPPU discovery functionality to user applications, so that
to expose the available accelerators in the system, named
as agents. The AQLSM API represents agents using opaque
handles. The application can traverse the list of agents that
are available in the system using aqlsm iterate agents(), and
query agent specific attributes using aqlsm agent get info().
Examples of agent attributes include name, type of sub-nodes
(CPU, HW accelerator, GPPU, Programmable accelerator),
supported queue types, maximum number of queues and size.

In the current implementation the AQLSM runtime supports
sixteen queues managed by a single GPPU; this GPPU repre-
sents an agent with five sub-nodes, four image filtering and one
matrix multiplication accelerators acting as the accelerators.
Inserting queues in the GPPU can reduce the amount of
time the application spends stalling on the AQLSM API.
The size of the queues is configurable and it has a direct
impact on the parallelism that can be exploited by the GPPU.
In general, larger queues enable more concurrency among
the accelerators. In practice, contention for shared resources,
and diversity in the accelerator execution time may impose
unexpected limits to the benefits of parallelism.

One application should firstly initialize the AQLSM runtime
via the aqlsm runtime init() function. During the initialization
process AQLSM collects information, such as base physical
addresses and size, about the available agents and the reserved
AQLSM partition that is dedicated for the queues and data
buffers. The Unified Extensible Firmware Interface (UEFI)
gathers this information from the device tree infrastructure
and provides it to the Linux kernel. Figure 7 summarizes the
STM-aware programming paradigm flow. The flow in the SMP
method is free from step 4 .

After the initialization process completes, the programmer
allocates a queue via the AQLSM call aqlsm queue create(
queue type) which returns a valid queue object, if available,
attached to agent (event 1). Each queue is located in a system
memory partition especially reserved for the AQLSM; the
address of each queue’s packet is calculated by the AQLSM
with the following formula (VA stands for virtual address).

packetV A = queueV A + (packetIndex % queue size)

Upon queue creation, the queue as a data structure will contain
the following information. (i) a unique queue identification,
namely the queue index, (ii) the base virtual address for the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2019.2907912

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, XXX 2019

HW Accelerator

CPU

GPPU

User App

Translations

GATT

System RAM

VA

AQLSM
Queues

Tail
Head

Queues
Partition

OS
Partition

QN Q0 Q1

Pages-
Buffers

MMU

aqlsm_queue_t *queue;
aqlsm_queue_create(agent,
QUEUE_TYPE_SINGLE, queue);

1

1
uint64_t packetIndex =
aqlsm_request_packet_relaxed(queue, 1);

2

2 aqlsm_dispatch_packet_t* dispatch_packet =
(aqlsm_dispatch_packet_t*) queue->
base_address + packetIndex;

3

aqlsm_allocate_data_buffer(queue,
buffer_size, (void **) acquired_buffer);

4

4

3

aqlsm_initialize_packet(buf_info,
packetIndex);

5

5

6 aqlsm_signal_store_release(queue,
packetIndex);

6

7 aqlsm_signal_wait_acquire(queue,
packetIndex, 1, ,);

7

Fig. 7. Dispatching by using the AQLSM runtime with the STM method.
The GPPU dispatches the packet and triggers the acceleration process between
events 6 and 7. Event 4 invokes kernel-space to get the MMU service.

data buffer which corresponds to the specific queue (SMP
mode), (iii) the size of the data buffer in bytes (SMP mode).
The particular queue and context inside the GPPU are associ-
ated with the queue index, so that no false queue index can be
intentionally or non-intentionally used. In the queue creation
call, the queue packets are allocated and initialized as well.

Next, an available packet is requested via calling aqlsm re-
quest packet relaxed(queue, packets amount), which returns
the next packet number (packetIndex) in the queue (see Fig. 7
event 2), and internally AQLSM computes the address of the
allocated packet (event 3). The application should allocate
some space to be used as source and outcome data buffers. In
the case of the SMP method, a partition in system memory
is reserved for allocating physically contiguous data buffers
and the available address space which corresponds to each
queue (queueAS) is statically calculated by the AQLSM as:
queueAS=(Total Available AS)/(Max Queues). If an applica-
tion uses the STM method then the system (OS and AQLSM
runtime) is responsible to maintain the data buffers, and the
data allocation is done through the following function call
(event 4 in Fig. 7).

aqlsm_allocate_data_buffer(int queueIndex,int
buffer_size,void **acquired_buffer);

This function firstly pins the buffers to memory to avoid
swapping and with the synergy of a kernel driver, stores the
translations of the pages containing the buffer in a contiguous
memory space. This call returns a data buffer identification
(buffer id). Notice that the user can issue only a single request
to AQLSM to translate the virtual to physical addresses of a
user space buffer via the processor’s MMU and then re-use
this allocated buffer throughout many offloading operations, to
reduce the latency of the translation process. When the packet
is launched, then the GPPU, with the aid of the GATT, will
process the list of physical addresses properly, i.e., allow the
accelerator to work in the virtual address of the application.

After filling the acquired buffers with data, the application
requests the AQLSM to initialize the packet in memory
via the aqlsm initialize packet(aqlsm packet buffers info s
buf info, int packetIndex) call (event 5). This aqlsm packet
buffers info s structure is composed of the following fields:

struct aqlsm_packet_buffers_info_s {
int packet_type,
int accel_type,
int buffer_method,

int buffer_amount,
int *buffers_size,
int *buffers_type,
int *buffers_id };

where packet type indicates the type of packet, either dispatch
or barrier, and accel type indicates the type of acceleration
(possible types can be exported from aqlsm agent get info()).
The buffer method includes information about the mem-
ory access method used to allocate the data buffers and
might be one of the enumerations AQLSM BUF SMP or
AQLSM BUF STM. The buffer amount is the total number
of allocated data buffers, buffers type is a pointer describ-
ing whether the buffers contains source or outcome data,
buffers size is a pointer describing the size of data each buffer
contains in bytes. The buffers id is a pointer used only in the
STM method, and contains the buffers id which the AQLSM
uses to match the buffers with the appropriate translation list.

In summary, in order to launch a dispatch packet, the
application must create a queue, request an available packet,
allocate and prepare the data buffers, initialize the packet
and then inform the GPPU that there is a new offload
work available. The notification involves updating of the
packet header as valid and signaling the doorbell to the
GPPU (event 6). This is performed through the call
aqlsm signal store release(queueIndex,packetIndex).

The AQLSM is then responsible to update the write index
for this queue and the queue doorbell register in the GPPU.
The execution of the launched job may start asynchronously
while the application simultaneously submits additional pack-
ets in the same queue. If the application wants to get informed
about the state of the launched packets, this can be achieved
with the following function call (event 7).

aqlsm_signal_wait_acquire(int queueIndex,int *
packetIndex,int packet_amount,int
polling_interval_us,int max_time_to_wait_us);

The last parameter can be used to adjust maximum amount
of time the function shall wait for the requested packets to
complete; if zero value is passed, then the function blocks
and returns only when the packets have completed.

AQLSM Drivers
The AQLSM runtime uses Linux user I/O (UIO) drivers to

directly map the GPPU memory to a user space address range.
Thus, user space applications have direct access to the GPPU
memory and in particular to the GPPU contexts.This method
eliminates the need for any mechanism to transfer packets back
and forth between user space and kernel space. However, it is
not possible to set up DMA operations from user space, or do
contiguous memory allocation and direct cache control.

AQLSM runtime, in STM case, is complemented by a
kernel space driver, which provides the translation (virtual
to physical address) of user space allocated buffers, in order
to give an accelerator the ability to seamlessly operate in
application’s virtual address space and essentially to access
the corresponding system’s main memory. The driver supports
two commands, translate buffer pages and release buffer pages.
When a translate buffer pages is issued, the driver translates
and pins the buffer pages, generates an ordered list of their
physical addresses (PAs) and stores them in a contiguous
memory space using the services of the CMA and returns the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2019.2907912

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TOMOUTZOGLOU et al.: EFFICIENT JOB OFFLOADING THROUGH HARDWARE-ASSISTED PACKET-BASED DISPATCHING 9

PA of that list to the caller. When a release buffer pages is
issued, the driver un-pins the translated buffers from memory
and de-allocates the space where the list was previously stored.
Finally, the driver has the ability to clear the system’s cache
if the system does not provide any cache coherence between
the CPUs and external devices.
D. Synchronization

To achieve correct and efficient operation in a GPPU-
enabled heterogeneous SoC, atomic operations need to be sup-
ported to guarantee safety when multiple initiators, hardware
or software, concurrently access shared resources. Resolution
of simultaneous accesses is required (i) among the GPPU
hardware and the AQLSM Runtime, (ii) among applications
that can share the same queue, i.e., access shared software
resources through AQLSM calls and, (iii) and among the
GPPU and the accelerators. AQLSM provides full internal
synchronization in the sense that the caller user application
does not need to perform any added synchronization operation.

Table III summarizes the race conditions that create the need
to ensure atomic access since at least one initiator performs
an update operation. For instance, a data conflict can occur
when two user applications desire to allocate a new queue
and read the queue status concurrently; the allocated queues
are maintained as a bitmap vector inside a GPPU register. The
two applications cause a data race, which can produce the
allocation of the same queue unless the AQLSM handles this
event using an atomic read-and-update to ensure that the entire
operation sequence is indivisible. In total three potential cases
can be raised, while two different locks are employed hereafter,
since, even if cases R1 and R2 occur concurrently, they access
the same location. Multiple applications residing in different
clusters (A53 and A57) can simultaneously signal doorbells
in the same GPPU, which is a race-free operation since the
GPPU AXI4-Lite interface serializes the writes triggered by
the AQLSM call of each application. Ordering semantics
of doorbells are determined by the arbitration policy set in
the CCI400 cluster interconnect and by the AXI4-ThinLinks
bridge (see figure 6).

TABLE III
RACE CONDITIONS REQUIRING SYNCHRONIZATION OPERATIONS (VIA

ATOMIC LOCKS IN CRITICAL SECTIONS)

Name Concurrent operations Comment
R1 Different apps request to Ensure race-free

allocate a new queue allocation of a queue
R2 App destroys a queue and Avoid false allocation

app requests for a new queue and false destruction
R3 Different apps request a write Ensure race-free allocation

index in a shared queue of a write index

We used the inherent support of ARMv8-specific instruc-
tions for exclusive memory access to implement atomic opera-
tions, using shared variables among multiple applications. The
inline assembly code shown in figure 8 enables the lock and
unlock of a mutex in user space. We selected the user space
locks after we compared our implementation with two of the
locking mechanisms that Linux kernel already provides. Figure
9 depictes the performance of different locking solutions on
ARM big.LITTLE (big: 2 cores A-57, little: 4 cores A-53)
architecture, where the big core operates in the minimum and

__asm("ldaxr %x[old_val],[%x[ptr]]\n"

"cbnz %x[old_val], 1f\n"

"stlxr %w[error], %x[lock], [%x[ptr]]\n"

"1:\n"

:[error]"=&r" (error)

:[old_val]"r" (old_val),[ptr]"r" (ptr),

 [lock]"r" (0x1)

:"cc", "memory");

__asm("ldaxr %x[old_val], [%x[ptr]]\n"

"cmp %x[old_val], #1\n"

"bne 2f\n"

"stlxr %w[error], %x[unlock], [%x[ptr]]\n"

"2:\n"

:[error]"=&r" (error)

:[old_val]"r" (old_val),[ptr]"r" (ptr),

 [unlock]"r" (0x0)

:"cc", "memory");

Fig. 8. User-space mutex lock (left); atomically load *ptr, if ’0’ atomically
store ’1’ (a.k.a. lock), else exit. User-space mutex unlock (right); if ’1’
atomically store ’0’ (release lock), else exit.

0

2

4

6

8

10

2 3 4 5 6 7 8

Threads

Cortex-A57 (600MHz)

Linux mutex Linux futex Pthread mutex ARMv8 atomics

0

1

2

3

4

2 3 4 5 6 7 8

La
te

n
cy

 (
s)

Cortex-A53 (650MHz)

0

1

2

3

4

5

2 3 4 5 6 7 8

Cortex-A57 (1.15GHz)

Fig. 9. Benchmarking lock mechanisms on Juno r1 SoC; average latency
when scaling from two to eight threads with step one for one million atomic
update operations each.

maximum frequencies. The user space locks using the ARMv8
Load-Acquire / Store-Release exclusive instructions show the
best performance in the little cluster.

V. EVALUATION

We evaluate the proposed GPPU infrastructure (SMP and
STM methods) against the baseline, using the implementation
on Juno r1 development platform as described in section IV.
Each dispatching method leverages the available accelerators
by employing two different use cases, Sobel Edge Detec-
tion(SED) and Matrix Multiplication(MM). The objective is
not to assess the effectiveness of the accelerators themselves
with regard to the selected benchmarks, but to demonstrate the
efficiency of user-level dispatching in synergy with hardware-
assisted GPPU dispatching while offering an easy program-
ming framework. By default, eight job buffers are enabled for
the SED use case and two buffers for the MM.

The A57 dual-core cluster is configured in overdrive mode,
i.e., 1.15GHz, during the evaluation. Considering the band-
width constraints of the Thin-Links, in principle, we de-
signed modest-throughput accelerators, instead of a single
accelerator that could consume the full bandwidth of the
Thin-Links. Thus, it makes sense to dispatch multiple jobs
that can progress in parallel. Instead of integrating the high-
end version of the SED core that we developed to achieve
305MB/s processing rates, we integrated a SED core version
that can process an image at an average of 76 MB/s and a
matrix multiplication core that delivers an average processing
throughput of 6.8 MB/s, including the DMA latency.

For each dispatching method the user application consists
of one master thread and a number of worker threads. In
both SED and MM the master thread loads the data from
a solid state disk to memory. Then, the worker threads do
memory copies to initialize their private data pool; we call
these operations as “data loading”. In SMP and STM methods,
through the AQLSM, a worker thread allocates its private
queue and frees this queue after the dispatched job is complete.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2019.2907912

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, XXX 2019

With the aid of the GPPU infrastructure, jobs are dispatched
in a non-blocking fashion, while in the baseline method,
job dispatching is non-blocking among threads and blocking
for consecutive jobs within each thread, as far as there are
available job buffers. Figure 9 depicts how job dispatching
by two threads may incur latencies in time when blocking
and non-blocking is employed on the A57 cluster. The shaded
area marks the under-utilization of the physical accelerators
when the blocking method is used.

B1

A1

A1

A1 A2

B1 B2

B1

B2

A2

A1 CPU latency
(job preparation)
CPU latency
(job preparation)

Accelerator 3Accelerator 3

Accelerator 2Accelerator 2

Accelerator 1Accelerator 1

Accelerator 0Accelerator 0

One physical accelerator

A1ThreadA

ThreadB

Time

B1

A1ThreadA

ThreadB B1

Four physical accelerators

B1

A1

B2

A2

A1 A2

B1 B2

N
o

n
-b

lo
ck

in
g

B
lo

ck
in

g

B1

Fig. 9. Blocking and non-blocking job dispatching for two worker threads,
when one (left) or four (right) accelerators are available.

A. Performance Results

Figure 10 compares the performance between the three
dispatching methods for the SED use case. Both SMP and
STM outperform the baseline for any number of jobs. This
is due to distributed queue management and to hardware
job scheduling, which enables non-blocking job dispatching
and thus fully utilize the available acceleration system. On
the other hand, the baseline method that uses blocking job
dispatching in the case of a single worker thread, is not
capable of hiding the initialization or completion delays in
every case. As the number of jobs scales, the STM shows rapid
improvement while later the gain becomes less impressive;
this happens due to reusing the same job buffers and hence,
the same page translations (virtual-to-physical) for offloads in
batches of more than sixteen jobs. Notice that even in the
case of a single thread, by dispatching many packets and by
enabling multiple buffers in the Active Jobs RAM, the GPPU
enables concurrent utilization of the Sobel accelerators.

Figure 11 shows the performance of the dispatching meth-
ods for the SED use case as we scale the number of accelera-
tors from one to four.More precisely, we scale the number of
buffers in the Active Jobs RAM and in the kernel driver (for

the baseline case); each Sobel core processes the ready jobs
in round-robin fashion. The number of worker threads is eight
and each one dispatches 512 jobs. The measurements that are
plotted refer to HD images (1280×720 pixels) on the left and
FHD (1920×1080 pixels) on the right and the experiments are
done on the A53 (top) and on the A57 cluster (bottom). As
expected, when the number of buffers exceed the number of
hardware accelerators, there is barely any performance gain
for the SMP and STM methods; this holds for both the A53
and the A57 clusters. On the other hand, the baseline method
shows performance gain even when we scale the number
of job buffers from four to eight, since dispatching in the
baseline method allows all the threads to initialize their jobs
(by copying their data to the eight buffers). The STM and SMP
methods give a 3.3× and 3.7× performance improvement over
the baseline in the best case, in terms of jobs/sec. The worst
case performance improvement is 1.5× and 1.7× respectively.

0

20

40

60

80

100

BASELINE SMP STM

P
e

rf
o

rm
an

ce
 (j

o
b

s/
s)

A57, 720p

0

10

20

30

40

BASELINE SMP STM

A57, 1080p

1

2

4

8

0

20

40

60

80

100

BASELINE SMP STM

P
e

rf
o

rm
an

ce
 (j

o
b

s/
s)

A53, 720p

0

10

20

30

40

BASELINE SMP STM

A53, 1080p

1

2

4

8

Fig. 11. Performance impact of scaling the number of job buffers when eight
threads dispatch 512 SED jobs each.

With regard to the different CPU clusters, we receive exactly
the same performance for the SMP and STM methods when
we scale the number of job buffers from 1 to 8. This is
due to the significantly lower CPU involvement compared
to the amount of processing performed by the accelerators.
On the contrary, regarding the baseline method, when we
move the worker threads from the A53 to the A57 cluster, the

0

5

10

15

20

25

30

35

40

SMP STM BASELINE

Eight threads
8

16

32

64

128

256

512

0

50

100

150

200

8 16 32 64 128 256 512

Eight threads

SMP

STM

BASELINE

0

5

10

15

20

25

30

35

40

SMP STM BASELINE

P
e

rf
o

rm
an

ce
 (j

o
b

s/
s)

One thread

0

5

10

15

20

25

30

35

40

SMP STM BASELINE

Two threads

0

5

10

15

20

25

30

35

40

SMP STM BASELINE

Four threads

0

10

20

30

40

50

60

70

80

8 16 32 64 128 256 512

O
ve

ra
ll

 L
at

e
n

cy
 (

s)

One thread

0

10

20

30

40

50

60

70

80

90

8 16 32 64 128 256 512

Two threads

0

20

40

60

80

100

120

8 16 32 64 128 256 512

Four threads

0
1
2
3
4
5

8 16 32

0
1
2
3
4
5

8 16 32

0
2
4
6
8

8 16 32

0
3
6
9
12

8 16 32

Fig. 10. Scaling the number of dispatched jobs from 8 to 512 per thread and the number of threads from 1 to 8 that execute on the A57 cluster; each job
refers to SED processing of a FHD image

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2019.2907912

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TOMOUTZOGLOU et al.: EFFICIENT JOB OFFLOADING THROUGH HARDWARE-ASSISTED PACKET-BASED DISPATCHING 11

performance improves from 1% to 105% for the HD images
and 21% to 109% for the FHD images. Hence, SMP and STM
methods barely depend on CPU’s capacity in this scenario.

Figure 12 presents an analysis of execution latency when
a single worker thread executes on the A57 cluster and
dispatches 512 jobs to the Sobel accelerators in the SMP and
STM methods. For fair comparison, to ensure non-blocking
dispatching in the baseline method, we use four threads
to dispatch 128 jobs each. Notice that breakdown delays

1.66E-05
7.20E-07

5.00E+00
2.87E-04
8.98E-04

5.33E+01
5.30E-06

1E-07 1E-05 1E-03 1E-01 1E+01
Latency (s)(log 10 scale)

SMP

Destroy queues Acceleration latency
Manage queues Init packets
Data loading Data allocations
Create Queues

3.803E-02
5.780E+00
2.243E+01
5.328E+01
5.775E+01

5.821E-03

1E-03 1E-02 1E-01 1E+00 1E+01 1E+02
Latency (s) (log 10 scale)

BASELINE
Free allocations
Copy to user
Acceleration latency

Copy from user
Data loading
Data Allocations

1.45E-05
1.21E-01
1.21E-01

4.10E+00
3.82E-04
1.06E-03

5.79E+01
5.28E-06

1E-06 1E-04 1E-02 1E+00 1E+02
Latency (s)(log 10 scale)

STM

Destroy queues Acceleration latency
Manage Queues Init packets
Data loading Result data alloc
Source data alloc Create queues

Fig. 12. Breakdown of the SED benchmark (on FHD images) executing on
the A57 cluster and dispatching 512 jobs using all three dispatching methods;
profiling is performed using hardware counters in the FPGA.

are cumulative over offloading 512 jobs and are shown in
logarithmic (base 10) scale. In each plot the operations are
listed in a bottom–up time sequence. The delay to initialize the
values of each packet and the delay to manage the data buffers
and queues are the most important in SMP. However, these
latencies are negligible compared to other most dominant ones
in the STM and baseline. In the STM method, the allocation
of data, including pages translation and pinning, occurs in the
initialization phase of offloading and has an important effect in
the overall latency. Notice that since the size of each queue is
sixteen packets, such latencies increase until the job number
reaches sixteen; for batches larger than the queue size (i.e.,
sixteen), the translations are re-used since no more than sixteen
different pending jobs can be maintained for a single queue.
On the contrary, in the baseline case, the user-to-kernel and
kernel-to-user space copying of data buffers incur dominant
delays and scale exponentially with the workload size. As
shown in the bottom plot, the transfer of the outcome data to
user space costs 2.75× more time compared to user-to-kernel
copies due to that the result data are transferred via Write-
Unique type AXI4 snoop transactions from the accelerator,
which causes the data to be stored in main memory.

As figure 12 shows, the actual acceleration latency in STM
costs 8.63% more compared to SMP and baseline dispatch
methods, and globally STM exhibits 6.76% higher latency
compared to SMP. This extra latency is due to dynamic re-
programming of the GATT that pertains only to the STM
method. Finally, notice that the cost to load data differs in
all three dispatching methods; this happens because during
the acceleration processing that result data are stored in main
memory, the single worker thread in both SMP and STM
initializes jobs and does data loading at the same time. If

we execute the same baseline scenario on the A53 quad core
cluster, then the four threads perform data loading for the same
number of jobs in just 3.87 sec.

Figure 13 shows comparative performance results based on
the MM use case, in terms of jobs per second. As in the
case of the SED benchmark, the SMP method outweighs the
baseline method performance (jobs/s) in a range from 0.23%
for two threads up to 65% for eight threads. For small amount

84

85

86

87

88

89

90

4 8 16 32 64 128 256 512 1024 2048

P
e

rf
o

rm
an

ce
 (j

o
b

s/
s)

One thread

86

87

88

89

90

4 8 16 32 64 128 256 512 1024 2048

Two threads

SMP

STM

BASELINE

81

83

85

87

89

91

4 8 16 32 64 128 256 512 1024 2048

P
e

rf
o

rm
an

ce
 (j

o
b

s/
s)

Four threads

50

60

70

80

90

4 8 16 32 64 128 256 512 1024 2048

Eight threads

SMP

STM

BASELINE

Fig. 13. Scaling the number of jobs offloaded to the single matrix multipli-
cation accelerator and the number of threads running on the A57 cluster; a
single job refers to integer multiplication of square 100×100 matrices

of workloads (one and two threads) the performance difference
among the three methods is small. Actually in two threads, the
baseline method gives 2.3% and 0.6% (for increased workload)
better performance than the STM. For small matrices the
kernel driver is faster for the copy-to-user-space procedure,
compared to the virtual-to-physical translations in the STM
method. The STM is more efficient by 0.5% to 63.6% for
one, four and eight threads. Further, in the STM method, the
“knee” that appears in all plots is due to the re-use of translated
buffers for workloads larger than sixteen jobs.

B. Energy Results
To explore the impact of the GPPU in terms of energy

consumption, we use actual sensors measurements, which we
collect during our benchmarks. Juno board implements a set
of platform energy meter registers in the IOFPGA [31]. These
registers are updated every 100µs measuring instantaneous
current consumption, instantaneous voltage supply, instanta-
neous power consumption, and cumulative energy consump-
tion of the Cortex-A53 and Cortex-A57 clusters, Mali-T624
GPU cluster, and the fabric of the Juno r1 SoC. Monitor
registers inside the IOFPGA are exposed through sysfs and
accessed via the hwmon Linux kernel driver.

Figure 14 shows the energy consumption per job when
scaling the number of image filtering offloads and concurrent
threads. The cost of memory copies leads the baseline method
to consume higher energy that ranges from 2.7× to 4.7×,
compared to the proposed SMP and STM offloading strategies.

Figure 15 depicts the trade-off between performance and
energy consumption when switching from A57 (big) to A53
(little) cluster. For all the dispatching methods we can see
that there is a significant gain concerning the consumption of
energy. Nevertheless, the impact in performance is insignifi-
cant for both SMP and STM methods, while for the baseline
method performance degradation ranges from 41% to 124%.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2019.2907912

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, XXX 2019

0

10

20

30

40

50

60

4 8 16 32 64 128 256 512

Eight threads

SMP

STM

BASELINE

10

20

30

40

50

60

4 8 16 32 64 128 256 512

En
e

rg
y

(m
J)

 /
 J

o
b

Four threads

0

10

20

30

40

50

60

4 8 16 32 64 128 256 512

En
e

rg
y

(m
J)

 /
 J

o
b

One thread

0

20

40

60

80

4 8 16 32 64 128 256 512

Two threads

SMP

STM

BASELINE

Fig. 14. Energy consumption per job for SED use case with SMP, STM and
baseline methods when scaling the number of jobs from 4 to 512 and the
number of worker threads from 1 to 8.

-150%
-100%
-50%
0%
50%
100%

0
15
30
45
60
75

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

LE
G

A
C

Y

SM
P

ST
M

B
A

SE
LI

N
E

1T 2T 4T 8T

C
o

re
 E

n
e

rg
y

(m
J)

 /
 jo

b

Performance - Energy

A57

A53

Consumption Optimization (%)

Performance Deterioration (%)

-150%
-100%
-50%
0%
50%
100%

0
15
30
45
60
75

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

LE
G

A
C

Y

SM
P

ST
M

B
A

SE
LI

N
E

1T 2T 4T 8T

C
o

re
 E

n
e

rg
y

(m
J)

 /
 jo

b

Performance - Energy

A57

A53

Consumption Optimization (%)

Performance Deterioration (%)

-150%

-100%

-50%

0%

50%

100%

0

15

30

45

60

75

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

LE
G

A
C

Y

SM
P

ST
M

B
A

SE
LI

N
E

1T 2T 4T 8T

C
o

re
 E

n
e

rg
y

(m
J)

 /
 jo

b

Performance - Energy

A57 A53

Consumption Optimization (%) Performance Optimization (%)

-150%
-100%
-50%
0%
50%
100%

0
15
30
45
60
75

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

LE
G

A
C

Y

SM
P

ST
M

B
A

SE
LI

N
E

1T 2T 4T 8T

C
o

re
 E

n
e

rg
y

(m
J)

 /
 jo

b

Performance - Energy

A57

A53

Consumption Optimization (%)

Performance Optimization (%)

Fig. 15. Performance and energy consumption for SED use case for all three
dispatching methods; number of threads scales from 1 to 8 for 512 jobs each.

A comparison for the SMP, STM and the baseline methods
regarding the energy consumption is also conducted for the
MM use case. By capturing the energy that IOFPGA reports
for the same scenarios that were previously depicted in figure
13, the consumption gain for SMP is 5.1%-47.9% and for STM
is 1.8%-50.7% compared to the baseline. In particular, in the
case of two worker threads, where the baseline method proves
to be slightly faster than STM (1.2% in average), the average
gain in energy consumption for the STM over the baseline is
17.2%, ranging from 3.6% to 26.8%.

Figure 16 shows the trade-off between performance and
energy consumption when switching from A57 to A53 cluster.
As expected, when we switch the applications from A57 to
A53, the energy consumption is optimized for all the methods.
On the other hand, while the performance ranges almost at
the same level in the SMP and STM cases, for the baseline
method, the performance reduces by 2.3% (one thread) or
improves by 5.4% (four threads) and 19.7% (eight threads);
the latter results from the high intensity in communication with
the kernel driver due to fine-grain jobs, and the fact that the
A53 cluster offers two more physical processors.

In both use cases and for all methods we do not consider the
energy required in the LogicTile, since the control operations
of the GPPU are both infrequent and require data exchange
with system memory in units of 64 bytes, which is negligible
compared to the amount of processed data. To evaluate the
energy overheads of the GPPU infrastructure from the FPGA
prototype perspective, we used the Xilinx XPower Analyzer

-150%
-100%
-50%
0%
50%
100%

0
15
30
45
60
75

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

LE
G

A
C

Y

SM
P

ST
M

B
A

SE
LI

N
E

1T 2T 4T 8T

C
o

re
 E

n
e

rg
y

(m
J)

 /
 jo

b

Performance - Energy

A57

A53

Consumption Optimization (%)

Performance Deterioration (%)

-10%

0%

10%

20%

30%

40%

50%

60%

70%
80%

90%

0

2

4

6

8

10

12

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

LE
G

A
C

Y

SM
P

ST
M

B
A

SE
LI

N
E

1T 2T 4T 8T

C
o

re
 E

n
e

rg
y

(m
J)

 /
 jo

b

Performance - Energy

A57 A53

Consumption Optimization (%) Performance Optimization (%)

-150%
-100%
-50%
0%
50%
100%

0
15
30
45
60
75

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

LE
G

A
C

Y

SM
P

ST
M

B
A

SE
LI

N
E

1T 2T 4T 8T

C
o

re
 E

n
e

rg
y

(m
J)

 /
 jo

b

Performance - Energy

A57

A53

Consumption Optimization (%)

Performance Optimization (%)

Fig. 16. Performance and energy consumption for MM use case for all three
dispatching methods; number of threads scales from 1 to 8 for 2048 jobs each.

tool to extract the power figures of each hardware component.
Through setting both toggle rate and static probability to a
value of 50% we collected the dynamic power consumption
that is shown in the second column of table IV.

TABLE IV
FPGA COMPONENTS LATENCY, POWER AND NORMALIZED ENERGY

Latency Latency Energy Ratio Energy Ratio
Component Power FHD image 100x100 matrices FHD Image 100x100 matrices

(watt) (µsec) (µsec) Ecomp/Eacc(%) Ecomp/Eacc(%)
GPPU 0.61246 25 25 0.014440 0.143751

GATT 0.18820 2322 2 0.416469 0.003071

Image filter 1.00822 104074 N/A 100 N/A

Matrix multiplier 0.94412 N/A 11164 N/A 100

The time duration that each IP component is active, was
reported by real hardware AXI counters/timers instantiated in
the design. Hence, table IV summarizes the results of energy
assessment for our implemented design. The overhead of the
GPPU in terms of energy is negligible, only 0.14% for small
jobs (i.e., small matrices) and the overhead of GATT, in the
STM method, is only 0.41% for large jobs (i.e., FHD image
processing). Notice that the power consumed in the FPGA
I/O pins and the corresponding TLX interface is not included,
since it is the same across all methods.
C. Device Utilization Results

Figure 17 shows the utilized area of the hardware compo-
nents. The GPPU blocks (including GATTs) occupy 29%, the
image filter accelerators occupy 49% and the matrix multipli-
cation accelerator occupies 7% and operate in 100MHz.

GPPU
12%

GATT (x5)
17%

TLX400-IF &
Clocks
15%

Image Filter (x4)
49%

Matrix Multiplier
7%

Accs
56%

Device Utilization

Fig. 17. Area cost (%) of each component and of the full acceleration system
in the FPGA; Slice LUTs include both LUTs as logic and as memory, totaling
57906 LUTs. The GPPU includes also 16 BRAMs, the scheduler 16, the
Image Filters 83 and the Matrix Multiplier 32 BRAMs.

D. Discussion
By using the GPPU framework, the distributed nature of

queue operations, such as queue allocation, packet prepara-
tion and launching without OS system calls, together with

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2019.2907912

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TOMOUTZOGLOU et al.: EFFICIENT JOB OFFLOADING THROUGH HARDWARE-ASSISTED PACKET-BASED DISPATCHING 13

hardware-assisted dispatching and batch-mode offloading en-
able shorter delays in job dispatching to hardware accelerators.
While one dimension in achieving energy efficiency and
optimal performance is through the optimization of special-
purpose hardware accelerators, another important dimension is
the efficient interfacing, in terms of software and hardware, of
user applications to such systems. Through providing a unified
virtual address space among the diverse computational units of
a system, the programmer’s productivity is greatly improved;
all subtle interfacing, resource monitoring and scheduling to
the accelerators is abstracted by the AQLSM. The benefit of
GPPU to provide a unified packet-based API involves also
limitations in terms of delay to de-capsulate packets and
program the accelerator with the domain-specific parameters.
As the level of heterogeneity between the hardware acceler-
ators which are attached to a single GPPU increases, so is
the complexity incurred for the GPPU. Further, the GPPU
currently is not designed to decide which processes deserve
access to the accelerator and for how long.

By scaling the number of queues as available resources
for the applications, the GPPU can bring significant perfor-
mance improvement only if more accelerators are integrated
since the GPPU dispatch latency is orders of magnitude less
compared to accelerator latency (see figure 12). The support
of multiple independent queues incurs queue management
and synchronization, which requires negligible complexity in
both hardware and software components and most importantly
incurs little perturbations among the different applications.

To maximize the system throughput co-located applications
to shared accelerators with shared memory are examined
in various works; by performing OpenCL kernel execution
scheduling authors in [36] propose balancing of performance
degredation. Recently, CuMAS [37] offers automatic over-
lapping of data transfers and kernel executions, but it fo-
cuses on scheduling multiple CUDA applications, rather than
scheduling of a single application’s data transfers. Scheduling
is an additional direction by which the GPPU infrastructure
can similarly be exploited to control system utilization or
resource interference and prioritization. We intend to examine
the applications’ behavior and the impact of different GPPU
scheduling algorithms to the system in future work.

SMP-based offloading delivers the best performance across
scaling number of jobs, CPU type and accelerator type (single
or multi-threaded, image filtering or matrix multiplication).
This is due to the GPPU framework and mainly because
the SMP strategy is free from any virtual-to-physical non-
contiguous translation process. However, the downside is that
we currently do not support memory management for the
reserved data partition for such operation; a fixed-size memory
region is statically assigned to each queue for the lifetime
of the job. The STM strategy allows for full exploitation of
system memory without the overheads of IOMMU address
translation. The AQLSM runtime enables transparent adoption
of either SMP or STM method and essentially removes the
overhead of kernel calls since the only interaction with kernel-
level driver occurs only in the initialization phase.

In the scope of GPGPU execution paradigm to take advan-
tage of shared virtual memory (SVM) key feature across the

CPU and the GPU, recent research proposed improvements
inside page walk schedulers, necessary in reducing address
translation overheads [38]. None of other schedulers i.e.,
sophisticated wavefront and memory controller schedulers
attempt to tackle these overheads. The researchers apply
batching of page table walk requests and larger IOMMU
buffer size, which determines the size of the lookahead for
the scheduler. For custom accelerators equipped with IOM-
MUs, recent works [39] propose to offload TLB misses to
the page walker of the host core MMU, which effectively
provides a unified virtual memory to accelerators but in a very
intrusive way (requiring hardware modifications). Moreover,
as SVM supports zero-copying which allows to pass only
pointers between CPU and GPU for packet-based data access,
it nevertheless requires using a separate memory allocator
(e.g., clSVMAlloc()) instead of standard malloc() [40]. Ad-
ditionally, frequent launch and teardown incurs overheads
due to execution of heavyweight synchronization instructions
to initialize the context registers at start and to make the
results visible to the CPU side at teardown. To address the
limitations of the zero-copy and memcpy approaches, more
recent solutions introduce new memory hierarchy in multiGPU
environments and extensions of the MOESI protocol [41]. As
accelerators have now become first-class compute citizens,
instead of employing such sophisticated techniques, unified
memory addressing feature can provide great advantages with
our proposed strategies which at the same time expose a much
easier programming model.

VI. CONCLUSIONS

The key to exploiting accelerator-rich architectures is the
efficient offloading of jobs; first, this involves architectural
simplifications through providing support for devices’ virtual
address space without additional cost of IOMMUs and second,
efficiency involves removing traditional OS system calls while
at the same time providing a highly easy API and light runtime
at the programmer side.

We have introduced the GPPU to support efficient com-
munication between CPUs and accelerator components (pro-
grammable like GPUs, or custom hardware accelerators). The
two GPPU core benefits are programmability simplification
and communication latencies reduction. The developed GPPU
is a hybrid component comprised of both mechanisms in hard-
ware and in software, which facilitate efficient job dispatching.
By exploiting user-level queuing, workload dispatching to
hardware accelerators allows the removal of drawbacks related
to copying objects through the operating system calls. We
presented an optimized GPPU hardware that includes data
structures supporting: (i) scaling number of queues, which
are maintained in unified system memory space, (ii) con-
solidation of applications’ scattered data that reside in non-
contiguous memory space offering a contiguous device address
space (thus eliminating the need of IOMMU for peripheral
devices), (iii) synchronization mechanisms to achieve race-
free sharing of multiple threaded applications that offload jobs
to accelerators, and, (iv) hardware support for dispatching to
hierarchical organization of accelerators. In addition, we de-
veloped the AQLSM Runtime which complements the GPPU

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2019.2907912

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, XXX 2019

innovative hardware and exposes an efficient programming
layer to applications by reducing communication latency and
programmability barrier. We believe that our GPPU infras-
tructure brings a homogenizing hardware layer to diverse
accelerating components and a runtime to permit applications
to be productively targeted to heterogeneous architectures
while utilizing the available accelerators in an optimized way.

REFERENCES

[1] N. Brookwood, “AMD fusion family of APUs: Enabling a
superior, immersive PC experience,” 2010. [Online]. Available:
www.amd.com/Documents/48423 fusion whitepaper WEB.pdf

[2] HSAFoundation, “HSA platform system architecture specification,” re-
vision 1.1, 21 Jan 2016.

[3] Y. Yang, P. Xiang, M. Mantor, and H. Zhou, “CPU-assisted GPGPU on
fused CPU-GPU architectures,” in Proc. of the IEEE 18th Int’l Symp.
on High-Perf. Comp. Arch., 2012, pp. 1–12.

[4] M. S. Orr et al., “Fine-grain task aggregation and coordination on
GPUs,” in 41st Ann. Int’l Symp. on Comp. Arch., 2014, pp. 181–192.

[5] J. Shen, J. Fang, H. Sips, and A. L. Varbanescu, “Performance gaps
between openMP and openCL for multi-core CPUs,” in Proc. of the
41st Int’l Conf. on Par. Proc. Works.(ICPPW), 2012, pp. 116–125.

[6] T. Ramashekar and U. Bondhugula, “Automatic data allocation and
buffer management for multi-GPU machines,” ACM Trans. Archit. Code
Optim., vol. 10, no. 4, pp. 60:1–60:26, Dec. 2013.

[7] T. B. Jablin et al., “Dynamically managed data for CPU-GPU architec-
tures,” in 10th Int’l Symp. on Cod. Gen. & Opt., 2012, pp. 165–174.

[8] C. Augonnet et al., “StarPU: A unified platform for task scheduling
on heterogeneous multicore architectures,” Concurr. Comput.: Pract.
Exper., vol. 23, no. 2, pp. 187–198, Feb. 2011.

[9] I. Gelado et al., “An asymmetric distributed shared memory model for
heterogeneous parallel systems,” SIGPLAN Not., vol. 45, no. 3, pp. 347–
358, Mar. 2010.

[10] “GMAC-2: Easy and efficient programming for cuda-based systems,”
NVIDIA GPU Tech Conference GTC 2012, May 14-17, 2012.

[11] CUDA, “NVIDIA CUDA programming model.”
[12] Y. S. Shao et al., “Toward Cache-Friendly Hardware Accelerators,” in

Proc. of the Sens. to Cloud Arch. Works. (SCAW), 2015.
[13] B. Wile, “Coherent accelerator processor interface (CAPI) for POWER8

systems, www-304.ibm.com/webapp/set2/sas/f/capi/home.html.”
[14] Freescale, “MSBA8100 baseband accelerator, 2008.”
[15] Analog, “ADSP-SC58x and ADSP-2158x series.”
[16] Intel, “Enabling consistent platform-level services for tightly coupled ac-

celerators.” [Online]. Available: www.intel.com/content/dam/doc/white-
paper/quickassist-technology-aal-white-paper.pdf

[17] Intel, “Intel quickassist technology, performance optimization guide,”
Num 330687, Rev 1.0, Sep. 2014.

[18] Y. Fujii et al., “Data transfer matters for GPU computing,” in Proc. of
the 2013 International Conference on Parallel and Distributed Systems
(ICPADS ’13), 2013, pp. 275–282.

[19] J. Cong et al., “Architecture support for accelerator-rich cmps,” in Proc.
of the 49th Ann. Des. Aut. Conf., 2012, pp. 843–849.

[20] F. Ji et al., “DMA-assisted, intranode communication in GPU accelerated
systems,” in Proc. of the 14th IEEE Int’l Conf. on High Perf. Comp. and
Comm. (HPCC), 2012, pp. 461–468.

[21] D. Mbakoyiannis, O. Tomoutzoglou, and G. Kornaros, “Energy-
performance considerations for data offloading to fpga-based acceler-
ators over pcie,” ACM Trans. Archit. Code Optim., vol. 15, no. 1, pp.
14:1–14:24, Mar. 2018.

[22] A. Kegel et al., “IOMMU: Virtualizing IO through IO memory man-
agement unit (IOMMU),” ser. ASPLOS ’16 Tutorials, 2016.

[23] G. Kornaros et al., “I/O virtualization utilizing an efficient hardware
system-level Memory Management Unit,” in Proc. of the 2014 Int’l
Symp. on System-on-Chip (SoC), Oct 2014, pp. 1–4.

[24] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural support for
address translation on GPUs: Designing memory management units for
CPU/GPUs with unified address spaces,” in Proc. of the 19th Intl Conf.
on Arch. Sup. for Prog. Lang. and Op. Sys., 2014, pp. 743–758.

[25] J. Power, M. D. Hill, and D. A. Wood, “Supporting x86-64 address
translation for 100s of GPU lanes,” in IEEE 20th Int’l Symp. on High
Perf. Comp. Arch., 2014, pp. 568–578.

[26] G. Kornaros and M. Coppola, “Enabling efficient job dispatching in
accelerator-extended heterogeneous systems with unified address space,”
in 30th Int’l Symp.on Comp.Arch. & High Per.Comp.(SBAC-PAD), 2018.

[27] O. Tomoutzoglou, D. Bakoyannis, G. Komaros, and M. Coppola, “Effi-
cient communication in heterogeneous SoCs with unified address space,”
in 11th Int’l Symp. on Rec. Com.-centric SoC, Jun 2016, pp. 1–6.

[28] ARM, “ARM system memory management unit architecture specifica-
tion,” 2016, SMMU architecture version 2.0.

[29] Advanced Micro Devices, Inc., “AMD I/O virtualization technology
(IOMMU) specification,” 2011.

[30] J. Veselý et al., “Generic system calls for GPUs,” in 2018 ACM/IEEE
45th Ann. Int’l Symp. on Comp. Arch. (ISCA), 2018, pp. 843–856.

[31] ARM, “Juno ARM development platform SoC,” 2015, Technical Refer-
ence Manual, Rev. r1p0.

[32] ARM, “ARM LogicTile Express 20MG,” 2014, technical Reference
Manual V2F-1XV7.

[33] ARM, “ARM Corelink TLX-400 network interconnect thin links,” 2013.
[34] Xilinx Inc, “Vivado Design Suite User Guide High-Level Synthesis,”

Nov. 2015.
[35] ARM Corelink. CCI-400 Cache Coherent Interconnect Technical Refer-

ence Manual (ARM DDI 0470), 2013.
[36] S. Lee and C. Wu, “Performance characterization, prediction, and

optimization for heterogeneous systems with multi-level memory inter-
ference,” in IEEE Intl Symp. on Workl. Char.(IISWC), 2017, pp. 43–53.

[37] M. E. Belviranli et al., “Cumas: Data transfer aware multi-application
scheduling for shared GPUs,” in Proc. of the Int’l Conf. on Superc.,
2016, pp. 31:1–31:12.

[38] S. Shin et al., “Scheduling page table walks for irregular gpu applica-
tions,” in 45th Ann. Int’l Symp. on Comp. Arch., 2018, pp. 180–192.

[39] Y. Hao, Z. Fang, G. Reinman, and J. Cong, “Supporting address
translation for accelerator-centric architectures,” in 2017 IEEE Int’l
Symp. on High Perf. Comp. Arch. (HPCA), Feb 2017, pp. 37–48.

[40] Y. Go et al., “APUNet: Revitalizing GPU as packet processing accel-
erator,” in Proc. 14th USENIX Conf. on Net. Sys. Des. & Impl., 2017,
pp. 83–96.

[41] A. K. Ziabari et al., “UMH: A hardware-based unified memory hierarchy
for systems with multiple discrete GPUs,” ACM Trans. Archit. Code
Optim., vol. 13, no. 4, pp. 35:1–35:25, Dec. 2016.

Othon Tomoutzoglou received both the MSc. and
the BSc. degree from the Technological Educational
Institute of Crete, Heraklion, Greece in 2014 and
2016 respectively. He is currenly a Design Engi-
neer in research projects with the Technological
Educational Institute of Crete. His current research
interests include multicore and heterogeneous archi-
tectures, embedded and reconfigurable systems, RTL
Design, high-level synthesis and operating systems.

Dimitris Mbakoyiannis received the BSc. de-
gree from the Technological Educational Institute of
Crete, Heraklion, Greece in 2014. He is currenly
a Design Engineer in research projects with the
Technological Educational Institute of Crete. His
current research interests include heterogeneous ar-
chitectures, embedded and reconfigurable systems,
high-level synthesis and operating systems.

George Kornaros is an Assistant Professor of
Informatics Engineering Dept. at the Technological
Educational Institute of Crete, Greece, where he
leads the Intelligent Systems and Computer Archi-
tecture Group. His research interests include multi-
core architectures, high speed communication ar-
chitectures, and embedded and reconfigurable sys-
tems. Kornaros has designed single chip network
processors for the industry, published more than 60
scientific articles, and edited the book “MultiCore
Embedded Systems”. He holds three patents and is

a member of the Technical Chamber of Greece.

Marcello Coppola is the technical director at
STMicroelectronics and has more than 20 years of
industry experience focused on developing break-
through technologies. He has a graduate degree
in computer science from the University of Pisa,
Italy. His research interests include HPC, IoT for
education, cyberphysical systems, 5G, automotive
technologies, and multi-core and many-core SoCs.
Coppola has coauthored more than 50 scientific pub-
lications and held various roles in top international
conferences and workshops. He holds 26 patents and

is involved in multiple European research projects.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2019.2907912

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

