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Fig. 14. Energy consumption per job for SED use case with SMP, STM and
baseline methods when scaling the number of jobs from 4 to 512 and the
number of worker threads from 1 to 8.
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Fig. 15. Performance and energy consumption for SED use case for all three
dispatching methods; number of threads scales from 1 to 8 for 512 jobs each.

A comparison for the SMP, STM and the baseline methods
regarding the energy consumption is also conducted for the
MM use case. By capturing the energy that IOFPGA reports
for the same scenarios that were previously depicted in figure
13, the consumption gain for SMP is 5.1%-47.9% and for STM
is 1.8%-50.7% compared to the baseline. In particular, in the
case of two worker threads, where the baseline method proves
to be slightly faster than STM (1.2% in average), the average
gain in energy consumption for the STM over the baseline is
17.2%, ranging from 3.6% to 26.8%.

Figure 16 shows the trade-off between performance and
energy consumption when switching from A57 to A53 cluster.
As expected, when we switch the applications from A57 to
A53, the energy consumption is optimized for all the methods.
On the other hand, while the performance ranges almost at
the same level in the SMP and STM cases, for the baseline
method, the performance reduces by 2.3% (one thread) or
improves by 5.4% (four threads) and 19.7% (eight threads);
the latter results from the high intensity in communication with
the kernel driver due to fine-grain jobs, and the fact that the
A53 cluster offers two more physical processors.

In both use cases and for all methods we do not consider the
energy required in the LogicTile, since the control operations
of the GPPU are both infrequent and require data exchange
with system memory in units of 64 bytes, which is negligible
compared to the amount of processed data. To evaluate the
energy overheads of the GPPU infrastructure from the FPGA
prototype perspective, we used the Xilinx XPower Analyzer

-150%
-100%
-50%
0%
50%
100%

0
15
30
45
60
75

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

LE
G

A
C

Y

SM
P

ST
M

B
A

SE
LI

N
E

1T 2T 4T 8T

C
o

re
 E

n
e

rg
y 

(m
J)

 /
 jo

b

Performance - Energy

A57

A53

Consumption Optimization (%)

Performance Deterioration (%)

-10%

0%

10%

20%

30%

40%

50%

60%

70%
80%

90%

0

2

4

6

8

10

12

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

LE
G

A
C

Y

SM
P

ST
M

B
A

SE
LI

N
E

1T 2T 4T 8T

C
o

re
 E

n
e

rg
y 

(m
J)

 /
 jo

b

Performance - Energy

A57 A53

Consumption Optimization (%) Performance Optimization (%)

-150%
-100%
-50%
0%
50%
100%

0
15
30
45
60
75

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

B
A

SE
LI

N
E

SM
P

ST
M

LE
G

A
C

Y

SM
P

ST
M

B
A

SE
LI

N
E

1T 2T 4T 8T

C
o

re
 E

n
e

rg
y 

(m
J)

 /
 jo

b

Performance - Energy

A57

A53

Consumption Optimization (%)

Performance Optimization (%)

Fig. 16. Performance and energy consumption for MM use case for all three
dispatching methods; number of threads scales from 1 to 8 for 2048 jobs each.

tool to extract the power figures of each hardware component.
Through setting both toggle rate and static probability to a
value of 50% we collected the dynamic power consumption
that is shown in the second column of table IV.

TABLE IV
FPGA COMPONENTS LATENCY, POWER AND NORMALIZED ENERGY

Latency Latency Energy Ratio Energy Ratio
Component Power FHD image 100x100 matrices FHD Image 100x100 matrices

(watt) (� sec) (� sec) Ecomp/Eacc(%) Ecomp/Eacc(%)
GPPU 0.61246 25 25 0.014440 0.143751

GATT 0.18820 2322 2 0.416469 0.003071

Image filter 1.00822 104074 N/A 100 N/A

Matrix multiplier 0.94412 N/A 11164 N/A 100

The time duration that each IP component is active, was
reported by real hardware AXI counters/timers instantiated in
the design. Hence, table IV summarizes the results of energy
assessment for our implemented design. The overhead of the
GPPU in terms of energy is negligible, only 0.14% for small
jobs (i.e., small matrices) and the overhead of GATT, in the
STM method, is only 0.41% for large jobs (i.e., FHD image
processing). Notice that the power consumed in the FPGA
I/O pins and the corresponding TLX interface is not included,
since it is the same across all methods.
C. Device Utilization Results

Figure 17 shows the utilized area of the hardware compo-
nents. The GPPU blocks (including GATTs) occupy 29%, the
image filter accelerators occupy 49% and the matrix multipli-
cation accelerator occupies 7% and operate in 100MHz.

GPPU
12%

GATT (x5)
17%

TLX400-IF & 
Clocks
15%

Image Filter (x4)
49%

Matrix Multiplier
7%

Accs
56%

Device Utilization

Fig. 17. Area cost (%) of each component and of the full acceleration system
in the FPGA; Slice LUTs include both LUTs as logic and as memory, totaling
57906 LUTs. The GPPU includes also 16 BRAMs, the scheduler 16, the
Image Filters 83 and the Matrix Multiplier 32 BRAMs.

D. Discussion
By using the GPPU framework, the distributed nature of

queue operations, such as queue allocation, packet prepara-
tion and launching without OS system calls, together with
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hardware-assisted dispatching and batch-mode offloading en-
able shorter delays in job dispatching to hardware accelerators.
While one dimension in achieving energy efficiency and
optimal performance is through the optimization of special-
purpose hardware accelerators, another important dimension is
the efficient interfacing, in terms of software and hardware, of
user applications to such systems. Through providing a unified
virtual address space among the diverse computational units of
a system, the programmer’s productivity is greatly improved;
all subtle interfacing, resource monitoring and scheduling to
the accelerators is abstracted by the AQLSM. The benefit of
GPPU to provide a unified packet-based API involves also
limitations in terms of delay to de-capsulate packets and
program the accelerator with the domain-specific parameters.
As the level of heterogeneity between the hardware acceler-
ators which are attached to a single GPPU increases, so is
the complexity incurred for the GPPU. Further, the GPPU
currently is not designed to decide which processes deserve
access to the accelerator and for how long.

By scaling the number of queues as available resources
for the applications, the GPPU can bring significant perfor-
mance improvement only if more accelerators are integrated
since the GPPU dispatch latency is orders of magnitude less
compared to accelerator latency (see figure 12). The support
of multiple independent queues incurs queue management
and synchronization, which requires negligible complexity in
both hardware and software components and most importantly
incurs little perturbations among the different applications.

To maximize the system throughput co-located applications
to shared accelerators with shared memory are examined
in various works; by performing OpenCL kernel execution
scheduling authors in [36] propose balancing of performance
degredation. Recently, CuMAS [37] offers automatic over-
lapping of data transfers and kernel executions, but it fo-
cuses on scheduling multiple CUDA applications, rather than
scheduling of a single application’s data transfers. Scheduling
is an additional direction by which the GPPU infrastructure
can similarly be exploited to control system utilization or
resource interference and prioritization. We intend to examine
the applications’ behavior and the impact of different GPPU
scheduling algorithms to the system in future work.

SMP-based offloading delivers the best performance across
scaling number of jobs, CPU type and accelerator type (single
or multi-threaded, image filtering or matrix multiplication).
This is due to the GPPU framework and mainly because
the SMP strategy is free from any virtual-to-physical non-
contiguous translation process. However, the downside is that
we currently do not support memory management for the
reserved data partition for such operation; a fixed-size memory
region is statically assigned to each queue for the lifetime
of the job. The STM strategy allows for full exploitation of
system memory without the overheads of IOMMU address
translation. The AQLSM runtime enables transparent adoption
of either SMP or STM method and essentially removes the
overhead of kernel calls since the only interaction with kernel-
level driver occurs only in the initialization phase.

In the scope of GPGPU execution paradigm to take advan-
tage of shared virtual memory (SVM) key feature across the

CPU and the GPU, recent research proposed improvements
inside page walk schedulers, necessary in reducing address
translation overheads [38]. None of other schedulers i.e.,
sophisticated wavefront and memory controller schedulers
attempt to tackle these overheads. The researchers apply
batching of page table walk requests and larger IOMMU
buffer size, which determines the size of the lookahead for
the scheduler. For custom accelerators equipped with IOM-
MUs, recent works [39] propose to offload TLB misses to
the page walker of the host core MMU, which effectively
provides a unified virtual memory to accelerators but in a very
intrusive way (requiring hardware modifications). Moreover,
as SVM supports zero-copying which allows to pass only
pointers between CPU and GPU for packet-based data access,
it nevertheless requires using a separate memory allocator
(e.g., clSVMAlloc()) instead of standard malloc() [40]. Ad-
ditionally, frequent launch and teardown incurs overheads
due to execution of heavyweight synchronization instructions
to initialize the context registers at start and to make the
results visible to the CPU side at teardown. To address the
limitations of the zero-copy and memcpy approaches, more
recent solutions introduce new memory hierarchy in multiGPU
environments and extensions of the MOESI protocol [41]. As
accelerators have now become first-class compute citizens,
instead of employing such sophisticated techniques, unified
memory addressing feature can provide great advantages with
our proposed strategies which at the same time expose a much
easier programming model.

VI. CONCLUSIONS

The key to exploiting accelerator-rich architectures is the
efficient offloading of jobs; first, this involves architectural
simplifications through providing support for devices’ virtual
address space without additional cost of IOMMUs and second,
efficiency involves removing traditional OS system calls while
at the same time providing a highly easy API and light runtime
at the programmer side.

We have introduced the GPPU to support efficient com-
munication between CPUs and accelerator components (pro-
grammable like GPUs, or custom hardware accelerators). The
two GPPU core benefits are programmability simplification
and communication latencies reduction. The developed GPPU
is a hybrid component comprised of both mechanisms in hard-
ware and in software, which facilitate efficient job dispatching.
By exploiting user-level queuing, workload dispatching to
hardware accelerators allows the removal of drawbacks related
to copying objects through the operating system calls. We
presented an optimized GPPU hardware that includes data
structures supporting: (i) scaling number of queues, which
are maintained in unified system memory space, (ii) con-
solidation of applications’ scattered data that reside in non-
contiguous memory space offering a contiguous device address
space (thus eliminating the need of IOMMU for peripheral
devices), (iii) synchronization mechanisms to achieve race-
free sharing of multiple threaded applications that offload jobs
to accelerators, and, (iv) hardware support for dispatching to
hierarchical organization of accelerators. In addition, we de-
veloped the AQLSM Runtime which complements the GPPU
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innovative hardware and exposes an efficient programming
layer to applications by reducing communication latency and
programmability barrier. We believe that our GPPU infras-
tructure brings a homogenizing hardware layer to diverse
accelerating components and a runtime to permit applications
to be productively targeted to heterogeneous architectures
while utilizing the available accelerators in an optimized way.
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