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Abstract 

 
 Heterogeneous System Architecture (HSA) is a type of computer processor 

architecture that integrates different processor architectures, for example central 

processing units and graphics processors, on the same bus with shared tasking and 

memory. These systems have different processes from different sources, with 

different priorities and weights, which are required to be performed by different 

processors architectures. 

 The above is achieved by scheduling. Scheduling is the process by which 

processes are given access to system resources (e.g. processor cycles, 

communications bandwidth). The demand for fast computer systems, the execution 

of multiple processes simultaneously (multitasking) and requirement for transmitting 

multiple flows simultaneously (multiplexing) have as a result the need for an efficient 

scheduling algorithm. The basic function of the scheduler is to determine which 

process will be run when there are several runnable processes. Therefore the 

scheduler choices have an impact on the utilization of system resources and other 

performance parameters. There exists a number of CPU scheduling algorithms like 

First Come First Serve, Shortest Job First Scheduling, Round Robin scheduling, 

Priority Scheduling etc, but due to a number of disadvantages these are rarely used 

in real time operating systems except Round Robin scheduling. Especially in a 

heterogeneous multicore system with existence of multiple queues with different 

priority and weight each, the scheduling/ dispatching of each queue separately and 

on the whole, is a critical issue. The purpose is to find, study and implement in a 

program language such us C, an algorithm to achieve a better management in such 

queues. 
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Σύνοψη 

 

 Σε ένα ετερογενές σύστημα αρχιτεκτονικής συνδυάζονται διαφορετικές 

αρχιτεκτονικές επεξεργαστών, για παράδειγμα, κεντρικών μονάδων επεξεργασίας 

και επεξεργαστές γραφικών, οι οποίοι μπορεί να συνδέονται στον ίδιο δίαυλο, να 

μοιράζονται διεργασίες και να έχουν κοινόχρηστη μνήμη. Τα συστήματα αυτά 

δέχονται διαφορετικές διαδικασίες από διάφορες πηγές, με διαφορετικές 

προτεραιότητες και βάρη, οι οποίες για την εκτέλεση τους απαιτούν διαφορετικές 

αρχιτεκτονικές επεξεργαστών. 

 Τα παραπάνω επιτυγχάνονται με την χρονοδρομολόγηση. Η 

χρονοδρομολόγηση είναι η διαδικασία με την οποία οι διεργασίες αποκτούν 

πρόσβαση στους πόρους του συστήματος (π.χ. επεξεργαστή, μνήμη κ.α). Η ανάγκη 

για έναν αλγόριθμο χρονοδρομολόγησης προκύπτει από την απαίτηση γρήγορων 

υπολογιστών συστημάτων για την επίτευξη πολυεπεξεργασίας (εκτέλεση 

περισσότερων από μία διεργασία κάθε φορά) και πολυπλεξίας (ταυτόχρονη 

μετάδοση πολλαπλών ροών). Η χρονοδρομολόγηση είναι μια θεμελιώδης 

λειτουργία του λειτουργικού συστήματος που καθορίζει ποια διαδικασία θα 

εκτελεστεί, όταν υπάρχουν πολλές εκτελέσιμες διαδικασίες.  

 Ο τρόπος χρονοδρομολόγησης της CPU είναι ιδιαίτερα σημαντικός επειδή 

έχει αντίκτυπο στην αξιοποίηση των πόρων του συστήματος και στις παραμέτρους 

των επιδόσεων. Υπάρχει μια πληθώρα από αλγόριθμους χρονοδρομολόγησης όπως 

η ουρά προτεραιότητας, η συντομότερη εργασία πρώτη, η χρονοδρομολόγηση 

Round Robin, η χρονοδρομολόγηση με βάση την προτεραιότητα κλπ, αλλά εξαιτίας 

μιας σειράς από μειονεκτήματα αυτές οι τεχνικές σπάνια χρησιμοποιούνται στα 

λειτουργικά συστήματα πραγματικού χρόνου, εκτός της χρονοδρομολόγησης Round 

Robin. Ειδικά σε ένα ετερογενές σύστημα πολλαπλών πυρήνων, με την ύπαρξη 

πολλαπλών ουρών, με διαφορετική προτεραιότητα και βάρος η καθεμία, η 

διαδικασία χρονοδρομολόγησης/αποστολής διεργασιών από κάθε ουρά ξεχωριστά 

αλλά στο σύνολό τους, είναι ένα κρίσιμο ζήτημα.  
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 Ο σκοπός της παρούσας εργασίας ήταν να βρεθεί, μελετηθεί και υλοποιηθεί 

σε μια γλώσσα προγραμματισμού, όπως η C, ένας αλγόριθμος, βασισμένος στα 

βάρη των εργασιών, για να επιτευχθεί καλύτερη διαχείριση τέτοιων ουρών. 
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1 Introduction 

 Heterogeneous System Architecture (HSA) is a computer processor architecture that 

integrates central processing units and graphics processors on the same bus, with shared 

memory and tasks. The GPU has great processing power and the overwhelming majority of 

applications and computing tasks exploit the processing power offered by GPUs, therefore 

the HSA aims to properly utilize the processing power offered by GPUs. The HSA has 

developed from the HSA Foundation, whose founding members are AMD, ARM, MediaTek, 

Qualcomm, Texas Instrument, Imagination and Samsung [1]. HSA is widely used in system-

on-chip devices, such as tablets, Smartphones and other mobile devices. 

 Scheduling is an increasingly important topic in HSA systems. Scheduling is the 

process by which processes are given access to system resources (e.g. processor cycles, 

communications bandwidth). The demand for fast computer systems, the execution of 

multiple processes simultaneously (multitasking) and requirement for transmitting multiple 

flows simultaneously (multiplexing) have as a result the need for an efficient scheduling 

algorithm. The basic function of the scheduler is to determine which process will be run 

when there are several runnable processes. Therefore the scheduler choices have an impact 

on the utilization of system resources and other performance parameters. There exists a 

number of CPU scheduling algorithms like First Come First Serve, Shortest Job First 

Scheduling, Round Robin scheduling, Priority Scheduling etc, but due to a number of 

disadvantages these are rarely used in real time operating systems except Round Robin 

scheduling [2].  

1.1 Research questions and methodology 

 The purpose of the present thesis is the study of the following: a) How a scheduling 

algorithm for dispatching jobs to accelerator processors in a heterogeneous system can be 

implemented. b) What the behavior of the algorithms on various conditions of executions is. 

The structure of the remaining of this thesis is as follows. Firstly the objective of this work is 

presented. Next heterogeneous architecture, the architecture of the GPU and the 

programming environments of GPU are briefly presented. Afterwards the principles and 

criteria of scheduling are analyzed. Sequentially a description of basic scheduling algorithms 

is presented. Then the basic idea of our algorithm is analyzed and the way of 
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implementation is described. Next measurements based on specific scenarios are 

presented. The last part includes the conclusions of the present work and future proposals. 
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2 Objective of the Study 

 The basic idea of the algorithm is as follows. In the context of a multiprogrammed 

environment we assume we have N applications, a set NQ of queues with a fixed max weight 

(weight_queue) that the system assigns to each queue. The weight of each queue 

represents the maximum time quantum allocated to this queue for execution, or the 

normalized maximum time quantum. Each application enqueues jobs in queues. The jobs 

are dispatched to a hardware accelerator either single or multi-threaded (e.g. GPU). The 

queue contains packets with the job attributes, such as pointers to the kernel code and 

data, estimated execution time, type, etc.  

 The centralized scheduler when deals with a queue with a higher weight 

(weight_queue) compared to a queue with a less weight, must serve a number of packets in 

proportion to the ratio of their weights. The algorithm cannot service packets with total 

weight greater than the weight of the queue (weight_queue). Additionally the total serviced 

weight of all queues should be less or equal than the maximum total weight of the 

algorithm, which is equal to the sum of all queues weights. When the total maximum weight 

of all queues weights has been achieved then a cycle is completed. Hence dequeuing 

packets must be enqueued before the cycle starts. If the packets have been enqueued 

during the new cycle, they will be served in the next cycles. Essentially, the algorithm 

scheduling policy works in Round-Robin fashion and provides weighted fairness for variable-

length packets (i.e., execution time) maintained in multiple queues. 
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3 Heterogeneous architecture 

 The progress in semiconductor technology has brought evolving microprocessors 

developed for a wide range of applications such as aerospace, power electronics, defense 

systems, geosciences, bioinformatics, interactive digital media, cloud computing, etc. In 

heterogeneous multi-core systems for specialized purposes, the cores are integrated into 

the same chip specific processor/functional units and general-purpose cores [3]. 

Heterogeneous computing refers to systems that use more than one kind of processor. 

Therefore, the opportunity to accelerate emergency applications by running critical tasks on 

fast cores is given. This embodiment has advantages in areas such as performance, power 

optimization. Especially in the last decade, multi-core processors are increasingly used 

because of the high performance they provide, while they have reduced their energy 

requirements.  

 A heterogeneous computer cluster is more effective than a homogeneous since 

some types of processing units perform better than others in certain processing tasks. 

Furthermore the closely tied hardware accelerator within a node can reduce communication 

requirements by making use of locality data. Overall system performance can be improved 

by allowing the heterogeneous cores to work collaboratively on different parts of an 

application. 

 Therefore commercial operating systems have been improved to support the 

parallelism offered by multi-core processors. Furthermore, the need for extensive battery 

life in portable devices and high performance, has led to power/efficient performance and 

ultra low power small cores (e.g. Intel’s Atom processor). Since available different types of 

cores, architectural options when designing a platform are also more. The possibility of 

developing heterogeneous architectures, combining large and small cores on the same die, 

in order to provide a range of power / performance capacity is also given. In addition to the 

large and small cores, on-die integration in specific areas accelerators for operating special 

purpose, such as graphics and media processing has become widespread.  

 According to Kyriazis G [4], the essence of the HSA strategy is to create a single 

unified programming platform providing a strong foundation for the development of 
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languages, frameworks, and applications that exploit parallelism. More especially, HSA’s 

objectives include: 

• The use of the processing power offered by GPUs 

• Removing the programming dam between CPU/GPU. 

• Reduced CPU / GPU latency communication status. 

• The opening of the programming platform to a wider range of applications by enabling 

existing programming models. 

• Create a base for registration of additional processing elements beyond the GPU and CPU. 

 An HSA application is run on a various platforms comprising both CPUs and 

Intellectual Property (IPs) such GPUs. HSA permits the application to execute at the best 

possible performance and power points on a certain platform, without dispensing flexibility. 

Simultaneously, it improves programmability, portability and compatibility. 

 Figure 3-1 indicates a simple HSA platform. The HSA Accelerated Processing Unit 

(APU) includes a GPU with multiple HSA compute units (H-CUs), a multicore CPU, and the 

HSA memory management unit (HMMU). The above components are in communication 

with coherent and non-coherent system memory. 

 

Figure 3-1 A simple HSA platform [4] 
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3.1 Types of heterogeneous architecture 

 For heterogeneous systems factors such as performance, power, flexibility and 

programmability should be taken into account. According to Chitlur, N. et al [4], types of 

heterogeneous architecture configuration can be described as follows: 

 

 

 

 

 

 

Figure 3.1-1 : Heterogeneous Architectures Under Exploration [5] 

 

Core+IP Integration[5]: This type of architecture (illustrated in Figure 1)   integrates multiple 

homogeneous cores with hardware accelerators (also known as intellectual property (IP)). In 

this type of architecture, the IP block is low power but achieves high-performance process 

for specific areas such as graphics, security, imaging, etc. 

System on Chip  CPU  GPU Devices  

Exynos 5 Dual 
1.7 GHz dual-core ARM 

Cortex-A15  

ARM Mali-

T604 (quad-core)  

SamsungChromebookXE303C1

2,
[
Google Nexus 10, 

Tegra 3 T30L 
1.2 GHz quad core  (up to 

1.3 GHz in single-core mode)  
12 core  

Lenovo IdeaPad Yoga 11,  Acer 

Iconia Tab A700, ZTE Era, 

Teggra 4 T114  
Up 1.9 GHZ quad core Cortex-

A15  
72 cores  

Tegra Note 7, Microsoft 

Surface 2, HP SlateBook x2, 

Toshiba AT10-LE-A  

Tegra K1 T132  
up to 2.5 GHZ dual core 

Denver (64bit) 
192 core  Google Project Tango tablet,  

Texas Instument 

 OMAP4460 

1.2–1.5 GHZ, dual core Cortex 

-A9 
PowerVR SGX54 

Samsung Galaxy Nexus, Archos 

80 Turbo, Huawei Ascend D1 

Table 3.1-1 Examples of Core+IP Integration [6] 

Asymmetric Core Integration[5]: This type of heterogeneous architecture is proposed by 

ARM Holdings and combines a number of general purpose cores. The cores are asymmetric 

Interconnect/ 

Memory 

Interconnect/ 

Memory 

Interconnect/ 

Memory 

Small 

Core(s) 

Core(s) IP(s) Big 

Core(s) 

Special 

Core(s) 

Core(s) IP(s) 

a. Core+IP Integration b. Asymmetric Core 

 Integration 

c. Asymmetric and 

 Specialization 
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in power consumption and performance.  Therefore large and small cores are collaborating 

to provide the power efficiency or performance when needed, with the probability of many 

same large and small pairs on a chip. The cores could be of different generations, although 

they are usually from the same ISA family. 

 Each pair (large and small cores) is considered as a virtual core. In real time only one 

core is active and running at any time. Hence the large core is used when the system 

requirements are high, whereas if the system requirements are low used the small core is 

used. When request for virtual core is alternating between low and high, the incoming core 

is enabled, the operation state is transferred, the outgoing core is closed down, and 

processing continues on the new core. [6] 

 

Figure 3.1-2 CPU migration via the in-kernel switcher [6] 

 

 The most powerful model of small and large cores is heterogeneous multi-processing 

(MP). This type allows the simultaneous operation of all the cores regardless of size. So 

processes with large computational requirements or high priority are executed by large 

cores. On the other hand, processes with less computational requirements or less priority 

can be performed by the small cores. [6] 

 

Figure 3.1-3 heterogeneous multi-processing (MP)[6] 
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System on Chip  big cores  LITTLE cores  GPU  Devices  

HiSilicon K3V3  1.8 GHz dual-

core Cortex-A15  

1.2 GHz dual-

core Cortex-A7  

Mali-T658   

HiSilicon Kirin 

920  

1.7-2.0 GHz Cortex-

A15  

1.3-1.6 GHz quad-core 

Cortex-A7  

Mali-T628MP4  Huawei 

Honor 6  

HiSilicon Kirin 

930  

Cortex-A53 quad 

core 2.0 GHz   

1,5 Ghz quad core 

Cortex-A53  

Mali-T628 MP4  Huawei P8  

Samsung Exynos 

5 Octa  

1.6-1.8 GHzquad-

coreCortex-A15  

1.2 GHz quad-core 

Cortex-A7  

PowerVR 

SGX544MP3  

Exynos 5-

basedSamsu

ng Galaxy S4, 

ZTE Grand S 

II   

Samsung Exynos 

5 Octa  

1.8-2.0 GHz quad-

core Cortex-A15  

1.3 GHz quad-core 

Cortex-A7  

Mali-T628MP6  Exynos 5-

basedSamsu

ng Galaxy 

Note 3, 

Samsung 

Galaxy Tab 

Pro, Galaxy 

S5 SM-

G900H  

Samsung Exynos 

5 Octa  

2.1 GHz quad-core 

Cortex-A15  

1.5 GHz quad-core 

Cortex-A7  

Mali-T628MP6  Exynos 5-

basedSamsu

ng Galaxy S5- 

G900, Odroid

-XU3, 

Odroid-XU4  

Samsung Exynos 

5 Hexa  

1.7 GHz dual-core 

Cortex-A15  

1.3 GHz quad-core 

Cortex-A7  

Mali-T624  Samsung 

Galaxy Note 

3 Neo  

Samsung Exynos 

5 Octa  

1.8 GHz quad-core 

Cortex-A15  

1.3 GHz quad-core 

Cortex-A7  

Mali-T628MP6  Samsung 

Galaxy Alpha  

Samsung Exynos 

7 Octa  

1.9 GHz quad-

core Cortex-A57  

1.3 GHz quad-core 

Cortex-A53  

Mali-T760MP6  Samsung 

Galaxy Note 

4 (SM-

N910C)  

Samsung Exynos 

7 Octa (7420 

model) 

2.1 GHz quad-core 

Cortex-A57  

1.5 GHz quad-core 

Cortex-A53  

Mali-T760MP8  Samsung 

Galaxy 

S6, Samsung 

Galaxy S6 

Edge  

Renesas Mobile 

MP6530[  

2 GHz dual-core 

Cortex-A15  

1 GHz dual-core 

Cortex-A7  

PowerVR 

SGX544  

 

Allwinner A80 

Octa  

Quad-core Cortex-

A15  

Quad-core Cortex-A7  PowerVRG6230   
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MediaTekMT659

5  

2.2 GHz quad-core 

Cortex-A17  

1.7 GHz quad-core 

Cortex-A7  

PowerVR G6200 

(600 MHz)  

 

MediaTek 

MT6595M  

2.0 GHz quad-core 

Cortex-A17  

1.5 GHz quad-core 

Cortex-A7  

PowerVR G6200 

(450 MHz)  

 

MediaTek 

MT6595 Turbo  

2.5 GHz quad-core 

Cortex-A17  

1.7 GHz quad-core 

Cortex-A7  

PowerVR G6200 

(600 MHz)  

 

QualcommSnapd

ragon 808 

(MSM8992)  

2.0 GHz dual-core 

Cortex-A57  

Quad-core ARM 

Cortex-A53  

Adreno 418  LG G4  

Qualcomm 

Snapdragon 810 

(MSM8994)  

2.0 GHz quad-core 

Cortex-A57  

Quad-core ARM 

Cortex-A53  

Adreno 430  HTC One 

M9, LG G 

Flex 

2, OnePlus 2  

Nvidia Tegra4 

T40 

1.9 GHz quad-

core ARM Cortex-

A15]+    

1 low power core  Nvidia GeForce 

@ 72 core  

Nvidia 

ShieldTegra 

Note 7  

Nvidia Tegra4 

AP40 

1.2-1.8 GHz quad-

core  

1 low power core  Nvidia GPU 

60 cores  

 

Table 3.1-2 Examples of big-LITTLE heterogeneous multi-soc[6] 

Asymmetry+Specialization[5]: The third type of configuration combines asymmetric cores, 

special purpose cores and hardware accelerators. The main difference lies in the special 

purpose cores which are used for special aims (hardware scheduling, management, etc). 

3.2 GPU architecture 

 A number of the multi-cores architectures have developed to meet the needs for 

processing power. GPU architecture is one of the most powerful. GPU architectures have 

multiple intensive processors that are specialized for the execution SIMT (Single Instruction 

Multiple Thread) operating activities. Until now, the performance of GPU architecture is at 

least six times faster than the general purpose CPU architecture [7]. The computer scientists 

were particularly interested in exploiting this computing power to quickly solve large 

general purpose problems, known as General-Purpose computing on the GPU (GPGPU), 

utilizing the potential of parallel programming. A platform called general-purpose 

computing on graphics processing units (GPGPU) has emerged to optimize the performance 

of GPU. GPGPU programs usually consist of two parts: kernel code and host code. Kernel 

code is executed on multiple GPU cores with the configuration. The host code is executed in 
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CPU and includes mainly the procedure for preparing the GPU device, data transfer between 

the GPU and the host, as well as the launching of kernels with configuration [8]. 

 Modern GPUs consist of hundreds of processing units operating at low to medium 

frequency, designed for throughput -oriented latency insensitive workload. To hide global 

memory latency, GPUs contain small or moderate sized on-chip caches, and make wide use 

of hardware multithreading, performing tens of thousands of threads simultaneously 

throughout the pool of processing units. The GPU processing units are usually organized in 

single-instruction multiple-data (SIMD) clusters controlled by a single instruction decoder, 

with access to fast on-chip caches and shared memories. The SIMD clusters execute 

instructions in lock-step and branch divergence treated with the implementation of both 

paths of the branch and concealing results from inactive processing units as necessary. The 

use of SIMD architecture and in-order execution of instructions permits GPUs to contain a 

greater number of arithmetic units in the same area as compared to conventional CPUs [9].  

 Due to the high computational requirement of graphics GPUs achieved single-

precision floating point arithmetic rates approaching 2 trillions of instructions per second. 

GPUs are designed with global memory systems capable of bandwidths approaching 200 

GB/sec. GPU memory is organized into multiple banks. Maximum performance is achieved 

when the accesses are aligned with the appropriate address boundaries. When a memory 

access is not aligned with an appropriate address boundary and in consecutive sequence, 

the memory access must be divided into multiple transactions resulting in a significant 

decrease of the effective bandwidth and increasing latency [9]. 

 Even though the GPU are powerful computing modules in their own right, their 

management is done by host CPU. The GPUs are usually connected with the host through 

PCI-Express bus and in most cases they have their own independent memory. To achieve 

data exchange with GPU, the host CPU performs DMA transfers between GPU memory 

systems and the host, and in some cases, allow their on-board memory to be mapped in the 

host's address space, therefore data is read or written only once during kernel execution [9]. 

3.2.1 CUDA-OPEN CL 

 For programming GPU’s, various programming environments have been developed. 

GPUs programming models initially consisted of specialized high-level programming 
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languages, such as HLSL, GLSL, and Cg [10]. In particular, after 2006, where NVIDIA opened 

its CUDA (Compute Unified Device Architecture) architecture, it eliminates the need to use 

the graphics application programming interfaces (API) for calculating applications, allowing 

utilization of GPU computing to more widespread use. Additionally, the Advanced Parallel 

Processing (APP) which enables API’s GPUs, working together with the CPU, is combined 

with the ability of programmers to develop GPU computing application without mastering 

graphics terms. At the same time it enabled the acceleration of the execution of applications 

and makes the coding of large programs easier. 

 The two modern programming GPU interfaces are CUDA and Open Computing 

Language (OpenCL). OpenCL, a portable language for GPU, is an open standard maintained 

by the non-profit technology consortium Khronos Group. CUDA is a C language framework. 

It is specifically for NVIDIA GPUs with set of language extensions that works only on 

NVIDIA’s GPUs, while OpenCL is an open standard that can be used to program central 

processing units (CPUs), graphics processing units (GPUs), digital signal processors (DSPs), 

field-programmable gate arrays (FPGAs) and other processors. 

 CUDA and Open/CL are quite similar to each other; they have similar programming 

models, execution models, memory models and platform models but different 

programming interfaces. For a programmer, the computing system consists of a host (a 

typical CPU), and one or more devices providing parallel processors and a large number of 

arithmetic execution units. Furthermore their built-in functions and syntax for various 

keywords are similar. Thus it is relatively easy to translate a CUDA program in an Open/CL 

program [10, 11]. 
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4 Background on scheduling algorithms 

 

Theorem: Dertouzos and Mok say: “No scheduling algorithm is optimal for 

scheduling hard real-time aperiodic tasks on two or more processors if all 

release times, deadlines, and execution requirements are not known a priori” 

as mentioned by Srinivasan A. [12] 

 

4.1 General principles of Scheduling Algorithms 

 In CPU scheduling we accept the following assumptions. There are a number of 

runnable processes waiting for the CPU. Waiting is performed in an “area” called job pool. 

Also all processes compete for resources and independent of each other. The main job of 

the scheduler is to distribute the CPU resources fairly and in a way that optimizes certain 

performance criteria 

 The scheduler constitutes essentially piece of the core of an operating system. It is 

responsible for selecting the next process to be executed. Operating systems may have up 

to three different schedulers. A short-term scheduler, a medium term scheduler and a long 

term scheduler [2]. The long term scheduler is responsible to select a job from the pool and 

load it to the main memory. The long term scheduler is responsible to select a job from the 

pool and load it into the main memory. These jobs are ready to be executed and inserted to 

the ready queue.  

 

 

 

 

 

Figure 4.1-1 Queuing diagram for scheduling [2] 

 

 From the ready queue, the short term scheduler, known as CPU scheduler, select a 

process to be executed and allocates the CPU. The scope of medium term scheduler is to 

remove processes from memory and to reduce the degree of multiprogramming results in 

Release 

Long term 

scheduling 

Medium term 

scheduling 

Medium term 

scheduling 

Short term 

scheduling 

Time out 

Event 

occurs 

Event wait 

Incoming Jobs 
CPU 

Ready, suspend queue 

Ready queue 

Blocked queue 

Blocked, suspend queue 



 

 

13 

swap system. Swap is performed by a dispatcher. A dispatcher is the unit that gives control 

of the CPU to the process. 

 Especially in real-time systems, where there are time restrictions in the calculations, 

the CPU scheduler performs an important role. In such a system the processes has to be 

completed within specified time restrictions. Most real-time systems can be applied in 

unpredictable environments that can handle unknown and changing tasks. Therefore a 

dynamic task scheduling is necessary. Additional software and system hardware must adapt 

to unforeseen compositions. 

 There are two main types of real-time systems [13]: Hard Real-Time System, and 

Firm or Soft Real-Time System. In Hard Real-Time System specified deadlines must be 

complied. Otherwise the result could be disastrous. Soft Real-Time System has higher 

tolerance. Such systems where performance is limited, but where are no catastrophic 

consequences in case of failure to meet the time constraints, are called soft real time 

systems. In real-time systems each task must be completed before its deadline. In soft real-

time system the simple Round Robin algorithm has as a result low throughput and as a 

consequence more number of context switches, longer response and waiting times. On the 

other hand, if such a system has a large CPU burst, this can lead to starvation problem. 

Priority scheduling may be a better choice in real-time systems, but still there is the problem 

of starvation, due to a low priority processes will forced to wait. 

4.2 Scheduling Criteria 

The basic Scheduling Criteria are [13]: 

• CPU Utilization - how busy the CPU is. 

• Context Switch: It is the process of storing and retrieving the state of a non-

integrated process, so that the process can be executed later, starting from the last 

saved context. It usually requires computing power, leads to memory waste and 

time, thus increasing the overhead of scheduler. 

• Throughput – depends on the number of processes that are completed per unit time 

Throughput and context switching and are inversely proportional.  
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• Turnaround Time- How long it takes to execute a process. Turnaround time derived 

from the sum of the waiting times to get into memory, waiting time in the ready 

queue, the execution time for the CPU and time for the necessary I/O. 

• Waiting Time- It is the sum of periods spent in ready queue and it is directly 

dependent on the scheduling algorithm.  

• Response Time-. How long it takes until the first response after a process request.  

 For a scheduling algorithm to be optimally it must achieve maximum CPU utilization, 

maximum context switches and throughput, but minimum turnaround time, minimum 

waiting time and response time. 

4.3 General Scheduling algorithms 

 Scheduling algorithms can be divided to static and dynamic algorithms. Static 

algorithms have fixed priorities assigned to classes and always prefer one class over 

another. 

4.3.1 First Come First Served (FCFS) 

 An example of a static algorithm is First Come First Served (FCFS) algorithm. FCFS is 

the oldest and simplest scheduling algorithm. FCFS can be implemented using a First Come 

First Served (FIFO) queue. This implementation is simple with minimal overhead on CPU. 

FIFO has only one queue, and the packet that arrived first also gets sent out first. Packets 

are sent in the order in which they arrive without hierarchy. This can be done either by a 

linked list or a ring buffer, or a hash table indexed by the values of packet arrival time. The 

latter method is used in many devices based on specially designed integrated circuits, while 

the two former methods are more common in cores operating systems like Linux or BSD. 

FIFO is a natural choice where queues do not require any hierarchy. 

 

 

Main Characteristics:  

• There is no prioritization which means that each process may eventually be 

completed, therefore, no starvation. 

Figure 4.3.1-1 First Come First 
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• The process with the longer burst time can monopolize the CPU, even if the burst 

time of another process is very small. Therefore, yield is low. [14] 

• The algorithm is seldom chosen since the process takes all resources until 

completion. 

• Convoy effect [15] is a crucial issue. It occurs when more than one processes share 

the same resources. If a long process has reserved resources for a very long time, the 

new short processes that are scheduled cannot be served. As a result they can cause 

additional delays and significantly increase the system load. 

4.3.2 Shortest Job First (SJB) [14] 

 The process assigned to the CPU has an execution time at least equal to the burst 

time. The scheduler sorts the processes according to the execution time. Processes with a 

short time burst are positioned in the starting of the queue and processes with longer burst 

time at the end of the queue. This algorithm requires an assessment of the integration time 

required for each process [14]. The design of this algorithm aims at maximum efficiency in 

most scenarios. 

 The main operating mode of the algorithm is as follows. The process having the 

shorter burst is allocated in CPU. If two processes have the same burst time, allocated first 

process came first according to the FCFS algorithm. 

Main Characteristics: 

• We must have knowledge of the length of the next CPU request. This is a problem 

with the SJF algorithm.  

• The algorithm SJB reduced the average waiting time because it first served small 

process and then the larger processes.  

• Although the average waiting time is reduced, it may adversely affect the processes 

with a long burst. In extreme cases, they will never serve the processes with large 

burst time, which is a major issue of this algorithm. 

• Long running jobs may starve, low supply of short jobs to CPU. 

• SJF is optimal in waiting time, by achieving minimum average waiting time. 
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4.3.3 Priority scheduling 

 Priority scheduling algorithms [15] is a basic classful scheduling algorithm in which 

each process has a value that represents the importance of task in the system. This value 

defines the priority. In the process with the highest priority, the resources are available for 

its completion. It consists of multiple classes with static priority [16]. It can be implemented 

either by each class having its own queue, ordinarily FIFO, either by a single sorted queue in 

with the higher priority tasks are at the front and the low priority at the back of the queue.  

 

 

 

 

 

Figure 4.3.3-1 Priority queuing 

 Higher priority queue must be empty before selecting a task from a lower priority. 

This is the cause of starvation that the algorithm may suffer. 

 There are two techniques of priority scheduling algorithms, dynamic or static priority 

[17]. In dynamic algorithms, priority changes during execution, it either decreases or 

increases according to specific mechanisms.  

Figure 4.3.3-2 shows a job with static priority (blue line), which has priority set to 250, and a 

task the priority of which decreases with time (red line). 

 

 

High priority Low priority 
1 

2 

3 

Figure 4.3.3-2 Static and dynamic priority 
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 In static priority, the priority of a process never changes. It is defined at the start and 

remains the same until its completion. This kind of algorithms can suffer of job starvation. 

Whenever a process is ready for execution but there are no resources available, the process 

must wait. If, however, processes with higher priority arrive continuously, then the process 

which was waiting will never be served. This case is known as starvation [17].  

 One way of avoiding starvation is to determine the number of times that a process 

can be overcome by higher priority tasks. Another technique is called aging during which the 

priority of a process increases over time. At some point the process will succeed is getting 

the necessary resources. The worst is as the process with the highest priority to come up so 

it must be executed first. Nevertheless aging technique introduces computing overhead 

because of the calculation of new priorities. Another issue is when the appropriate 

determination of the time aging will take place. If this time is too short, then low priority 

tasks will turn into high priority tasks very quickly, thus loading to FCFS algorithm. On the 

other hand if the aging time is too long, maybe the technique will become partially 

ineffective. 

4.3.4 Multilevel queue scheduling 

  

 

 

 

 

 

 

 

 

 

Figure 4.3.4-1 Multilevel queuing 

 The multilevel queue (MLQ) algorithm is based on the use of multiple queues. Each 

queue has different weight and the tasks are allocated to queues according to their 

importance. There is a queue for each category. Also for each queue a different algorithm 
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that will find the most important job of the queue can be selected. When resources are 

available the most important job is chosen from the queue with the highest priority to. If the 

queue is empty then the next queue is examined. If a task is found then resources are 

allocated and removed from the queue. 

Main Characteristics:[15]  

• Jobs cannot change queue. Therefore the right choice of queue is important for best 

results. 

• Need to determine the number of queues. 

• Determine the scheduling algorithm of each queue. 

• The way by which it is decided which task will be placed in which queue. 

4.3.5 Multilevel feedback queue scheduling 

 Multilevel feedback queue (MLFQ) [15] scheduling algorithms is an extension of MLQ 

algorithms. The main difference lies in the fact that the job can move from one queue to 

another queue. After a period of time quanta, the priority of process decreases and the 

priority queue changes. Also if a process is waiting in a queue too long this may increase the 

priority, and eventually it is transferred to another line with an increased priority. 

Nevertheless the main difficulty in applying the algorithm is MLFQ based on its complexity 

and because of usually introduced higher overhead. 

 

 

 

 

 

 

 

Figure 4.3.5-1 Multilevel feedback queuing 

 

 The problem of starvation is solved easily since it can change a job queue. Using 

parameters such as history and runtime information jobs can be distinguished at runtime 

according to their behavior. Problems with MLFQ algorithms can arise if a job changes 

behavior over time and the scheduler does not realize this change. In these cases the system 
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performance typically declines. Generally MLFQ algorithms achieve better results than other 

scheduling algorithms. However, they introduce overhead computational load. The 

implementation of Linux scheduler is based on MLFQ algorithm. 

Main Characteristics  

• the number of queues 

• scheduling algorithms for each queue 

• method used to determine when to upgrade a process 

• method used to determine when to demote a process 

4.3.6 Round Robin 

 The algorithm Round Robin (RR) [2, 14] assigns to each process a small unit of time, 

the time quantum. The schedule goes around this queue, allocating the CPU to each process 

for a specified time quantum. The new procedures are added to the end of the tail. 

 The Round Robin algorithm works as follows. At first, selected time is assigned to 

each process. Then the time is allocated to each process according to the FCFS algorithm. If 

the burst time is less than the quantum, then the carrying out of the process must be 

terminated. Otherwise the process is executed for as much time as quanta, and returns to 

the end of the queue waiting for the next cycle. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.6-1 Context switches in Round Robin 

 

Main Characteristics:  

• The basic RR has large waiting time and large response time  
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• Therefore it provides less throughput. 

• Can lead to reduced effectiveness of CPU, because of many context switches too 

short time quanta is selected. 

• On the other hand, if the time quantum is too large, then the algorithm 

approximates the FCFS algorithm. 

• Generally it achieves, higher average turnaround time than SJF, but better response. 

4.3.7 Weighted Round Robin 

 Weighted Round Robin (WRR) is a scheduling algorithm with the main use in ATM 

networks using fixed size packets. It was first proposed by M. Katevenis, S. Sidiropoulos and 

C. Courcoubetis in 1991[18]. The basic idea is that a weight is assigned in each flow. In every 

cycle of service, the number of packets served is proportional to the weight defined for each 

flow. The job will receive wi consecutive time slices in each round, and the duration of a 

round is the sum of all wi. 

Main Characteristics 

• Equivalent to regular round robin if all weights are equal to 1. 

• Simple to implement, since it doesn’t require a sorted priority queue. 

• Offers throughput guarantees - Each job makes a certain amount of progress each 

round. 

• By giving each job a fixed fraction of the processor time, a round robin scheduler 

may delay the completion of every job. 

4.3.8 Deficit Round Robin 

 Deficit Round Robin (DRR) is a queue scheduling algorithm based on round robin that 

is firstly applied to routing packets. It was proposed by M. Shreedhar and G. Varghese in 

1995 as a fair and efficient, with O(1) complexity  algorithm[19]. Patrick McHardy 

implemented DRR for Linux kernel 

 The main idea of DRR algorithm is as follow. There are queues of packets with 

specific flow for each queue. A quantum of service has been assigned to each queue and 

round robin technique is used to service the queues. The algorithm checks all the full tails in 

a sequence. If a non empty queue is found its deficit counter is incremented by its quantum 

value. The value of the deficit counter is a maximal amount of bytes that can be send at 



 

 

21 

each cycle. If the size of first packet of the queue is less than the deficit counter value, the 

packet can be sent and then the value of the deficit counter decreases by the packet size. 

Then, the size of the next packet is compared to the deficit counter value, etc. If the size of 

the first packet of the queue is greater than the deficit counter value, or the queue is empty, 

the scheduler will skip to the next queue; and the value of the deficit counter increases by 

the quantum value. If the queue is empty the deficit counter is set to zero. If a deficit 

counter becomes less or equal to zero then it increases by the quantum value. 

Main Characteristics: 

• The network administrator chooses weights of queues. 

• Regardless of the size of each packet, it provides a minimum rate to each flow.  

• If the quantum Qi is larger than the maximum size of packet of each flow, the 

complexity of DRR is O(1).  

4.4 Heterogeneous scheduled techniques 

 By default, GPU kernels executed serially, a kernel at a time. But the latest CUDA and 

Nvidia GPU architectures can perform multiple different kernels if resources are available. 

However the GPU kernels executes sequentially, if resources are insufficient. Sequential 

execution kernel could provide enough performance for most of the general-purpose 

computing. Nevertheless, in real-time systems, sequential execution can cause problems, 

because there is the potential for priority inversion. To resolve this problem numerous 

scheduled techniques have been proposed. 

4.5 Heterogeneous Scheduling Categories 

 The main purpose of each scheduling algorithm is to assign a task to a suitable 

processor so that total execution time is minimized. However, to find a schedule for a 

heterogeneous parallel architecture must take into consideration a number of factors such 

as: different processing elements, processes may not be operable by all processors; the run 

time of a process may be different depending on processing elements and the 

communication time may vary [20]. 

 Task scheduling on a heterogeneous system can be classified into several categories.  

 



 

 

22 

4.5.1 Static and dynamic Schedulers 

One category is static and another one dynamic. 

• In static, task-to-core mapping is done only once at the beginning of the application 

or at compile time offline. This model can be represented by dependency graph in 

which tasks in the critical path determine the total duration of application. This 

enables the application to accelerate by executing critical tasks in fast cores. Hence 

the schedule remains the same throughout execution of the application. Moreover 

all information about the tasks, such as the cost of execution and communication 

for each task and relationship with other tasks is known a priori [21]. 

 Static scheduling algorithms are classified into two categories, Heuristic-

based and Guided Random Search-based algorithms. Heuristic-based algorithms 

often provide good solutions with polynomial time complexity. Guided algorithms 

Random Search-based also give approximate solutions [21]. 

• In dynamic scheduling, progress monitoring of works and migration are used to 

ensure a certain level of performance applications. Information about the tasks, as 

the cost of execution and communication cost for every task and the relationship 

with other tasks is not known beforehand. So decisions are taken at runtime [21]. 

The dynamic scheduling enables automatic synchronization and scheduling by the 

runtime system such us OmpSs [22]. This model maintains a directed acyclic graph 

(DAG) with the current state of the process, and when fulfilling the requirements of 

a process it becomes ready to be scheduled to an available core. Although the 

dynamic programming is likely to achieve better application performance than the 

static scheduling, yet it can be better in small multi -core systems and not in large 

multi-core systems [20]. 

4.5.2 Clustering, Listing, Duplication-based and Guided-random schedulers 

 Moreover schedulers for heterogeneous systems can be divided into four types of 

schedulers: clustering, listing, duplication-based, and guided-random schedulers [24, 25]. 

Clustering, listing and duplication-based algorithms belong to Heuristic-based class 

algorithm [21]. 
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• Clustering schedulers comprise clusters and each cluster must be running on the 

same processor. Clustering heuristics are mainly proposed for homogeneous 

systems and they seem difficult to use in for heterogeneous systems. At the stage 

of clustering, the algorithm assumes that there are an infinite number of available 

processors. If the number of clusters is larger than the number of available cores, 

then it is necessary to merge the clusters so as to be as many as the available 

cores. Such type is the Levelized Min Time algorithm. With this method are 

organized clusters of tasks that can be performed in parallel depending on their 

level. Assuming a graph, sibling nodes in a graph have the same level. The 

priorities of tasks defined on a cluster according to the time of execution. Tasks 

with the largest execution time have the highest priority. The assignment task to 

the processor is in descending order of priority [23].  

• Listing schedulers have two phases. In the first phase, every task is given priority 

based on the policy defined in each algorithm. In the second phase, according to 

their priorities, tasks are assigned to processors. These kinds produce the most 

efficient schedules, without compromising the makespan and with a quadratic 

complexity in relation to the number of tasks [21, 23]. 

• The aim of duplication-based schedulers is the limitation of communication 

between processes. This is achieved by duplication of tasks. If a task has a lot of 

successors, it is doubled and running on multiple cores before their successors, so 

all successor tasks get the results from their predecessors with lower 

communication costs. This type of algorithm has two disadvantages, a higher 

complexity (cubic, in relation to the number of tasks) and the duplication of the 

execution of tasks. Therefore they require more processor power [21, 23]. 

• In Guided-random schedulers, the scheduling influenced by policies applied to 

other sciences. For example, they are based on genetic algorithms or chemical 

reaction algorithms [23]. Their results can be improved if more repetitions are 

performed, which therefore makes it more expensive than the based Heuristic 

approach [21]. 
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4.6 Basic Heterogeneous Scheduling Algorithms 

4.6.1 HEFT 

 Topcuoglu et al [25] presents Heterogeneous Earliest-Finish-Time (HEFT) algorithm. 

It is one of the best, more acceptable and well documented list-based heuristic scheduling 

algorithm. HEFT is among the best schedule in compared between 20 scheduling heuristics 

algorithms as mention Canon et al [26]. At terms of complexity has a O(n
2
p) complexity, 

where n is the number of tasks and p the processors. The HEFT algorithm consists of two 

stages. First it assigns a priority to each task and all the tasks sorted in decreasing order. The 

tasks are ranked upwards and downwards to configure scheduling priorities.  The maximum 

sum of computation and communication cost between the task and an exit node in the 

graph from that task is the upward rank of a task. The maximum sum of computation and 

communication cost between an entry node in the graph into that task is the downward 

rank. Afterwards, the task with the highest priority is assigned to the processor, which 

completes the execution of the task in the shortest possible time. Thus, the total execution 

time is minimized. There have been proposed various amendments of the above algorithm. 

HEFT ALGORITMH 
1: Compute ranku for all nodes  
2: ReadyTask � {Entry tasks}  
3: While ReadyTask is not empty  
4:   Select the task n with highest priority  
5:   Assign the task n to the processor p that minimizes the  
 earliest finish time (EFT) value of n 
6:   Update earliest start time (EST) values and ReadyTask  
7: End while  

 

4.6.2 CPOP 

 Critical Path on a Processor (CPOP) heuristic algorithm is proposed by Topcuoglu et 

al [25]. It also sorted the tasks in decreasing order. The tasks are ordered by the node 

priority arising to the addition of their upward rank and downward order. The task with the 

maximum sum belongs to the critical path. On each step these tasks are assigned to the 

critical-path-processor (CPP), which is usually the fastest processor that minimizes the 

length of the critical path, otherwise it is running on the processor that minimizes the EFT 

[23, 27]. The complexity is also as the HEFT, O(n
2
p).  
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CΡΟΡ ALGORITHM  
1: Compute ranku and rankd for all nodes  
2: ReadyTask �{Entry tasks}  
3: While ReadyTask is not empty  
4:    Select the task n with highest priority  
5:    If n is οιιt the critical processor  
6:   Assign n to the CΡΡ  
7:    Else  
8:   Assign the task n to the processor Ρ that  
  minimizes the EFT value of n  
9:    Update EST values and ReadyTask  
10: End while  

 

Both algorithms operate statically and require prior knowledge of computation and 

communication costs of each task for each processor type. 
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5. Implementation 

 The objective of this work is the implementation of a scheduling algorithm for 

dispatching jobs to accelerator processors in a heterogeneous system.  

5.1 Basic Idea 

 The basic idea of the algorithm is as follows. In the context of a multiprogrammed 

environment we assume we have N applications, a set NQ of queues with a fixed max weight 

that the system assigns to each queue. The weight of each queue represents the maximum 

time quantum allocated to this queue for execution, or the normalized maximum time 

quantum. Each application enqueues jobs in queues. The jobs are dispatched to a hardware 

accelerator either single or multi-threaded (e.g. GPU). Initially, we assume a single 

accelerator for servicing the works. The queue contains packets with the job attributes, such 

as pointers to the kernel code and data, estimated execution time, type, etc.  

 Special mention should be made to packet weight (Weight(m)) and to the field order. 

The Weight(m) of each packet is different and independent from the weights of the other 

packets. The objective of order is to discern the enqueue order of a packet. Packets 

enqueued during the same cycle have the same order. If a packet has order value greater or 

equal than the order value of current cycle then the packet is ignored. This way the 

scheduler serves only the packets that have been enqueued when the cycle started. Packets 

enqueuing after the cycle is started will serve in the next cycle. 

 The centralized scheduler when deals with a queue with a higher weight 

(weight_queue) compared to a queue with a lower weight, must serve a number of packets 

in proportion to the ratio of their weights. Essentially, the algorithm scheduling policy works 

in Round-Robin fashion and provides weighted fairness for variable-length packets (i.e., 

execution time) maintained in multiple queues.  

5.2 Algorithm Description 

 Each queue is designed as a ring buffer, with two pointers Front and Rear. In each 

queue fixed-size packets can be enqueued that contain the job weight (Weight) by 

amending the Rear pointer. A dequeue operation causes the Front pointer to decrease. If 

the Front pointer is equal to Rear then the queue is empty. If Front pointer plus one is equal 

to Rear pointer the queue is full. The above implementation is necessary due to the 
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limitation of physical memory. In our simulation model the queues are implemented as 

classical queues with head and tail pointers. In both cases the packets inside a queue follow 

a FIFO ordering. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2-1 Schematic algorithm description 

 

 Every queue i (1<=i<=NQ) has a maximum weight of dequeued packets 

(Weight_Queue(i).The Weight_Queue(i) is initially defined before the scheduler starts. Since, 

the sum of all weights (Weight_Queue(i)) determines the total weight (TotalWeight). 

 

TotalWeight= Weight_Queue(1) + …+ Weight_Queue(Q)  (1) 

 

  Additionally there is a variable current_order which keeps the current order, which 

in turn is the same as the number of cycle. Another variable, the order(packet m) , keeps the 

order when the packet is enqueued. 

 Each time it is possible to export packets as long as the following conditions are met 

with: a) the sum of total popped weight packets from all queues should not be exceeded by 

a maximum fixed threshold (TotalWeight) that was initially determined, b) the sum of the 

weights of the packets of each queue must be lower or equal than the weight of that queue 

(Weight_Queue(i)), and c ) the order(packet m) must be less than current_order. 

Accelerator 

Round Robin Packet from Queuei   

Front 

Rear 

Front 

Rear 

FIFO 

Queue 1 

weight_queue1 

FIFO 

Queue N 

weight_queueNQ 

weight_queue1 >.> weight_queueNQ 

TotalWeigth= weight_queue1 +…+ weight_queueNQ 
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 Also there is a variable or each queue i (1<=i<=NQ) that keeps the current total 

weight (CurrentTotalWeight(i)) of dequeued packets. CurrentTotalWeight(i) is initially set to 

zero. If a packet deqeue from a queue i, then the CurrentTotalWeight(i) is increased by the 

weight of packet. 

 

CurrentTotalWeight(i) = CurrentTotalWeight(i) + Weight(m)   (2) 

 

 Before being dequeued a packet, the sum of the current total weight of dequeued 

packets of the queue i plus the weight of the packet to be exported is calculated.  

 

CurrentTotalWeight(i)+ Weight(m)  (3) 

 

 If equation (3) is less than or equal to Weight_Queue(i), the packet can be dequeued, 

while increasing the current total weight of dequeued packets by the weight of dequeued 

packet. 

 

CurrentTotalWeight(i) = CurrentTotalWeight(i) + Weight(m)   (4) 

CurrentTotalWeight(i) + Weight   (5) 

 If the equation (5) is more than Weight_Queue(i) of queue i, then examine the next 

queue. 

 

 If the queue is empty then set the CurrentTotalWeight(i) equals Weight_Queue(i) 

(equation 6) 

 

CurrentTotalWeight(i) = Weight_Queue(i)  (6) 

 

 Finally there is a global variable, CurrentTotalWeight, which increases by the 

CurrentTotalWeight(i) (equation 7) 

 

CurrentTotalWeight= CurrentTotalWeight+ CurrentTotalWeight(i)   (7) 
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 The necessary and sufficient conditions to dequeue one job are for the 

CurrentTotalWeight to be less than the TotalWeight and for the CurrentTotalWeight(i) to be 

less than the Weight_Queue(i). Furthermore the order(packet m) must be less than the current 

order.  The queue will become ineligible to serve a)if the CurrentTotalWeight is greater or 

equal to the TotalWeight or b) if the CurrentTotalWeight(i) is greater or equal to the 

Weight_Queue(i) or c) the order(packet m) is greater than or equal to current order. 

 If the CurrentTotalWeight is greater or equal to the TotalWeight, it indicates that all 

packets permitted to be dequeued have indeed been dequeued. Also if the 

CurrentTotalWeight(i) is greater or equal to the Weight_Queue(i) this denotes that all packets 

permitted to be dequeued from queue i have been actually dequeued. 

 In each cycle packets with maximum total weight equal to TotalWeight can be 

dequeued. If the CurrentTotalWeight value is the highest possible and simultaneously less 

than or equal to TotalWeight then a cycle is completed. After this cycle, the procedure starts 

over again by setting the CurrentTotalWeight and CurrentTotalWeight(i)  for each queue i to 

zero. Thus, a new cycle begins for the packets that arrived during the previous cycle; the 

total system weight is still equal to TotalWeight. In this new cycle the scheduler examines 

the next eligible queue starting from the last queue plus one that was served in the previous 

cycle. This is done to provide fairness, since we avoid the bottom queues from starvation. 

Otherwise, with the start of every new cycle the first queue will be examined, consequently 

delaying the servicing of lower queues.  

 

Algorithm WSOVL 

Input: A set of NQ Queues, Weight_Queue(i), TotalWeight, 

  parameter queue number i to start from this queue. 

Output: return a eligible queue number i,  

 or control value (-1 or -2)  

 

1:For each cycle do 

2:  If Queues are empty then return (-2); 

3:  While (i< NQ) and (packet not found) do 

4:   If ((queue i is empty) or (order(packet m) >=current order)) and 

       (CurrentTotalWeight(i)< Weight_Queue(i) then  

5:  update  CurrentTotalWeigth, CurrentTotalWeight(i); 

6:  examine the next queue; 

7:   else if (queue i is not empty) and (CurrentTotalWeight(i) +  

Control Vlaue: 

• -1: call again Algorithm… 

while not complete the 

requisite total_weight 

• -2: empty queues or full 

weight 
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                    Weight(packet)<=Weight_Queue(I))  

   and (CurrentTotalWeight < TotalWeight) and (order(packet m)<current order) 

 then 

8:  found a packet in queue i; 

9:  update CurrentTotalWeight(i);  CurrentTotalWeight,  

10:   else if (queue i is not empty) and (CurrentTotalWeight(i) +  

               Weight(packet)>Weight_Queue(I))  

  and (CurrentTotalWeight < TotalWeight) and (order(packet m) <current order)  

 then 

11:  update CurrentTotalWeight, CurrentTotalWeight(i);  

12:  examine the next queue; 

13:   else if (CurrentTotalWeight = TotalWeight) then 

14:  return(-2); 

15:   else 

16:  examine the next queue; 

17:   endif 

18:  End while. 

19:  If found a packet then 

20: If (i<NQ) then  

21:  will examine the next queue (q=i+1) on next cycle; 

22: else  examine the queue 1 (q=1) on next cycle; 

23: endif 

24: return(i); 

25:  endif 

26:  if (i== NQ) then return (-1); 

27: End of Cycle; 
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6 Measurements 

 In order to study the behavior of the algorithm the following scenarios are 

implemented. These scenarios are indicative, with the purpose to demonstrate the behavior 

of algorithm. The algorithm can handle any number of queues but in the proof-concept 

examples, 8 queues have been assumed. 

6.1 Scenario 1. As many packets as can be served in a cycle, average packet 

weight 100, minimum queue weight 300, maximum queue weight 1000. 

 The scenario is based on the following assumptions. Suppose we have 8 queues. 

Queue 0 (Q0) has the largest weight and queue 7 (Q7) the minimum weight. The weights of 

the queues have been assigned as follows: Q0:1000, Q1:900, Q2:800, Q3:700, Q4:600, 

Q5:500, Q6:400 and Q7:300. This means that Q0 can serve packets with total weight at most 

1000, Q1 at most 900, and so on. The maximum total weight that can service in a cycle is the 

sum of the weights of all queues, which is 5200.  

 The weights of the packets that are enqeued into queues are provided by the 

Poisson distribution. The weight represents the execute time quanta of each packet. In our 

example the average weights of packets are 100. In each queue are enqeued as many 

packets as can be served in a cycle. For example in Q0, packets with maximum total weight 

equal to 1000 are enqeued, in Q1 packets with maximum total weight equal to 900 are 

enqeued, and so on. So Q0 has weight 1000 and can accept maximum 10 jobs of 100 each. 

The packets are enqeued just before the new cycle starts. This means that all queues are 

empty when the new packets are inserted. Moreover, we assume in all scenarios an 

additional delay of 2 time quanta of each job, because of reading, writing and transfer delay. 

 Table 6.1-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of 

serviced Jobs, for 10026 total serviced packets. 

Queue  Mean Latency Mean Weight Max Latency Number of Jobs 

0 3259.02238046796 100.021363173957 5032 1966 

1 2645.64325842697 99.5921348314607 4926 1780 

2 2485.47351627313 99.6119974473516 4723 1567 

3 2293.92398523985 99.9372693726937 4437 1355 

4 2074.53403141361 99.8368237347295 4095 1146 
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5 1815.50858369099 99.7907725321888 3607 932 

6 1570.29769959405 99.2936400541272 3041 739 

7 1255.66279069767 99.1027131782946 2353 516 

Table 6.1-1 Results for as many packets as can be served in a cycle, average packet weight 100, 

 min queue weight 300max queue weight 1000. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1-1 Latency for as many packets as can be served in a cycle average packet weight 100,  

min queue weight 300, max queue weight 1000. 

 

 From the above table we can understand that in such case, the queue with minimum 

weight (Q7. 300) enjoys the minimum latency. But Q7 serviced the fewest jobs. So if we 

desired to serve a small number of jobs with the minimum latency we would choose Q7. 

 If we have many jobs to service, then choose Q0. QO services the maximum jobs but 

simultaneously it has the maximum Mean Latency. Otherwise if we choose Q7 then the jobs 

will have to wait for more service cycles to complete. 

 In total we have 208 service cycles. In theses cycles we submit almost 9.45 jobs per 

service cycle to Q0, and 2.48 jobs per cycle to Q7 and 10026 total serviced jobs are 

submitted 
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6.2 Scenario 2. As many packets as can be served in a cycle, average packet 

weight 50, minimum queue weight 300, maximum queue weight 1000. 

  The weight of each queue, the total weight, the mode and the time of enqueing 

packets are the same as previous. The only difference is the weight of each packet. The 

weight is given by Poisson distribution; with distributed value 50, rather 100 in the previous 

scenario. So Q0 has weight 1000 and can accept maximum 20 jobs of 50 each, rather 10 jobs 

in scenario1, and so on. 

 Table 6.2-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of 

serviced Jobs, for 10001 total serviced packets. 

Queue  Mean Latency Mean Weight Max Latency Number of Jobs 

0 3397.7465648855 49.5648854961832 5263 1965 

1 2954.39132915003 49.9566457501426 5131 1753 

2 2750.22422680412 50.1024484536082 4949 1552 

3 2523.56995581738 49.8063328424153 4736 1358 

4 2223.09745390694 50.233538191396 4341 1139 

5 1950.68376963351 49.9151832460733 3900 955 

6 1628.28853754941 49.3333333333333 3404 759 

7 1248.73211009174 50.0605504587156 2510 545 

Table 6.2-1 Results for as many packets as can be served in a cycle, average packet weight 50, min queue weight 300, 

max queue weight 1000. 

 

 As in scenario 1, the queue with minimum weight (Q7. 300) enjoys the minimum 

latency. But Q7 serviced the fewest jobs. In addition QO services the maximum jobs but 

simultaneously it has the maximum Mean Latency. 
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Figure 6.2-1 Latency for as many packets as can be served in a cycle average  

packet weight 50, min queue weight 300, max queue weight 1000. 

 

 The main anticipated difference between two scenarios is the service cycles. In 

scenario 1, 208 cycles are needed to service 10026 jobs. In scenario 2, 100 cycles are needed 

to service 10001 jobs. Hence, in about 200 cycles (as scenario 1) approximately 20000 jobs 

will be served, since we have smaller jobs.  

6.3 Scenario 3. As many packets as can be served in a cycle, average packet 

weight 100, minimum queue weight 650, maximum queue weight 1000. 

 The weights of the queues have been assigned as follows: Q0:1000, Q1:950, Q2:900, 

Q3:850, Q4:800, Q5:750, Q6:700 and Q7:650. This means that Q0 can serve packets with 

total weight at most 1000, Q1 at most 950, and so on. The maximum total weight that can 

be serviced in a cycle is the sum of the weights of all queues, which is 6600. This implies that 

more jobs can served in a cycle, compared with the previous scenarios where the total 

weight was 5200. 

 The weights of the packets that are enqeued into queues are provided by the 

Poisson distribution. The weight represents the execute time quanta of each packet. In our 

example the average weights of packets are 100. In each queue are enqeued as many 

packets as can be served in a cycle. For example in Q0, packets with maximum total weight 

equal to 1000 are enqeued, in Q1 packets with maximum total weight equal to 950 are 

enqeued, and so on. So Q0 has weight 1000 and can accept maximum 10 jobs of 100 each. 

The packets are enqeued just before the new cycle starts. This means that all queues are 
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empty when the new packets are inserted. Moreover, we assume an additional delay of 2 

times quanta of each job, because of reading, writing and transfer delay. 

 Table 6.3-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of 

serviced Jobs, for 10031 total serviced packets. 

Queue  Mean Latency Mean Weight Max Latency Number of Jobs 

0 3908.52272727273 99.8837662337662 6423 1540 

1 3228.9780971937 99.8220396988364 6359 1461 

2 3125.08127721335 99.7902757619739 6266 1378 

3 3043.6499614495 99.7918272937548 6180 1297 

4 2917.42737896494 100.510016694491 5981 1198 

5 2863.1073943662 100.348591549296 5971 1136 

6 2762.92768791627 99.7887725975262 5499 1051 

7 2650.92680412371 99.9536082474227 5487 970 

Table 6.3-1 Results for as many packets as can be served in a cycle, average packet weight 100, min queue 

weight 650, max queue weight 1000. 

 

 

 

Figure 6.3-1 Latency for as many packets as can be served in a cycle average  

packet weight 100, min queue weight 650 max queue weight 1000. 

 

 For 10031 packets to be served were needed 162 cycles while in scenario 1 208 

cycles were needed to serve 10026 jobs. The above result was expected since in each cycle 

more jobs are served. Identical with scenario 1, the queue with minimum weight (Q7. 650) 

enjoys the minimum latency. But Q7 serviced the fewest jobs. So if we desired to serve a 

small number of jobs with the minimum latency we would choose Q7. QO services the 

Number of cycles 

L

a

t

e

n

c

y 



 

 

36 

maximum jobs but simultaneously it has the maximum Mean Latency. Otherwise if we 

choose Q7 then the jobs will have to wait for more service cycles to complete. Furthermore 

all queues served more jobs compared with scenario 1. Therefore by increasing the weight 

of a queue the number of the packets that can be served is increased. 

6.4 Scenario 4. As many packets as can be served in a cycle, average packet 

weight 50, minimum queue weight 650, maximum queue weight 1000. 

 The weight of each queue, the total weight, the mode and the time of enqueing 

packets are the same as scenario 3. The only difference is the weight of each packet. The 

weight is given by Poisson distribution; with distributed value 50, rather 100 in previous 

scenario. So Q0 has weight 1000 and can accept maximum 20 jobs of 50 each, rather 10 jobs 

in scenario1, and so on. 

 Table 6.4-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of 

serviced Jobs, for 10123 total serviced packets. 

 

Queue  Mean Latency Mean Weight Max Latency Number of Jobs 

0 3970.19078520441 49.9539260220636 6700 1541 

1 3564.08567511995 50.0575736806032 6672 1459 

2 3422.30930064888 49.8500360490267 6633 1387 

3 3315.99696279423 49.5512528473804 6515 1317 

4 3152.15905383361 49.9363784665579 6353 1226 

5 2969.58657243816 50.3533568904594 6056 1132 

6 2864.81605975724 49.4743230625584 5970 1071 

7 2704.33232323232 49.8464646464646 5555 990 

Table 6.4-1 Results for as many packets as can be served in a cycle, average packet weight 50, min queue 

weight 650, max queue weight 1000. 

. 
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Figure 6.4-1 Latency for as many packets as can be served in a cycle average  

packet weight 50, min queue weight 650, max queue weight 1000. 

 

 As previous, the queue with minimum weight (Q7. 650) enjoys the minimum latency. 

But Q7 serviced the fewest jobs. In addition QO services the maximum jobs but 

simultaneously it has the maximum Mean Latency. 

 The main anticipated difference between scenario 3 and scenario 4 is the service 

cycles. In scenario 3, 162 cycles are needed to service 10031 jobs. In scenario 4, 79 cycles 

are needed to service 10123 jobs. Hence, in about 160 cycles (as scenario 3) will be served 

approximately 20200 jobs, since we have smaller jobs. 

6.5 Scenario 5. Average packet weight 100, weight 300 of each queue. 

 We have 8 queues. Queue 0 (Q0) has the largest weight and queue 7 (Q7) the 

minimum weight. The weights of the queues have been assigned as follows: Q0:1000, 

Q1:900, Q2:800, Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300. This means that Q0 can serve 

packets with total weight at most 1000, Q1 at most 900, and so on. The maximum total 

weight that can service in a cycle is the sum of the weights of all queues, which is 5200.  

 The weights of the packets that are enqeued into queues are provided by the 

Poisson distribution. The weight represents the execute time quanta of each packet. In our 

example the average weights of packets are 100. In each queue are enqeued packets with 

total weight equal to the minimum weight of the queues. The minimum weight is the weight 

of queue 7, which is 300. So in Q0, packets with maximum total weight equal to 300 are 

enqeued, in Q1 packets with maximum total weight equal to 300 are enqeued, and so on, 

although Q0 weight is 1000. So in a cycle 10 packets of 100 can be served. Nevertheless 
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maximum 3 jobs of 100 each are inserted. The same occurs with other queues. The packets 

are enqeued just before the new cycle starts. This means that all queues are empty when 

the new packets are inserted. Moreover, we assume an additional delay of 2 time quanta of 

each job, because of reading, writing and transfer delay. 

 Table 6.5-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of 

serviced Jobs, for 1000 total serviced jobs. 

Queue  Mean Latency Mean Weight Max Latency Number of Jobs 

0 956.067226890756 99.9747899159664 2052 119 

1 1087.35658914729 98.2325581395349 2160 129 

2 1041.11904761905 98.4761904761905 2138 126 

3 1043.69230769231 98.7846153846154 2177 130 

4 939.895161290323 99.2661290322581 2173 124 

5 935.869918699187 100.032520325203 2063 123 

6 940.301587301587 97.8174603174603 2052 126 

7 973.09756097561 98.4065040650407 2139 123 

Table 6.5-1 Results for packets with weight 300 of each queue, average packet weight 100. 

 

 

 

Figure 6.5-1 Latency for packets with weight 300 of each queue, average packet weight 100. 

 

 The number of enqueuing packets in each queue is approximately the same because 

there is no difference in the total weight of enqueuing packets in queues. The Mean 
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Latency, Max Latency, and Number of serviced Jobs are about the same. The Mean Latency 

range from 935,86 to 1087,35, Max Latency range from 2052 to 2160 and the Number of 

serviced Jobs range from 123 to 130. Moreover 49 cycles are needed to serve 1000 jobs. 

Accordingly 490 cycles are needed to serve 10000 jobs. Additionally the most cycles needed 

than all previous scenarios. Briefly in such circumstance the algorithm behaves as Round 

Robin algorithm. 

6.6 Scenario 6. Average packet weight 100, weight 1000 of each queue. 

We have 8 queues. Queue 0 (Q0) has the largest weight and queue 7 (Q7) the minimum 

weight. The weights of the queues have been assigned as follows: Q0:1000, Q1:900, Q2:800, 

Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300. This means that Q0 can serve packets with 

total weight at most 1000, Q1 at most 900, and so on. The maximum total weight that can 

service in a cycle is the sum of the weights of all queues, which is 5200.  

 The weights of the packets that are enqeued into queues are provided by the 

Poisson distribution. The weight represents the execute time quanta of each packet. In our 

example the average weights of packets are 100. In each queue are enqeued packets with 

total weight equal to the maximum weight of the queues. The maximum weight is the 

weight of queue 0, which is 1000. So in Q0, packets with maximum total weight equal to 

1000 are enqeued, in Q1 packets with maximum total weight equal to 1000 are enqeued, 

and so on, although Q7 weight is 300. So in a cycle 3 packets of 100 can be served. 

Nevertheless about 10 jobs of 100 each are inserted. The same occurs with queues 1-6. The 

packets are enqeued just before the new cycle starts. This means that all queues are empty 

when the new packets are inserted. Moreover, we assume an additional delay of 2 time 

quanta of each job, because of reading, writing and transfer delay. 

 Table 6.6-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of 

serviced Jobs, for 1007 total serviced jobs. 

Queue  Mean Latency Mean Weight Max Latency Number of Jobs 

0 3230.16243654822 100.345177664975 4946 197 

1 8039.74725274725 99.4340659340659 14665 182 

2 9138.80503144654 99.4276729559748 17215 159 

3 9396.40875912409 100.401459854015 17309 137 
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4 10653.4086956522 100.191304347826 20613 115 

5 12724.8888888889 102.088888888889 25448 90 

6 12083.8 98.4933333333333 25550 75 

7 18095.3076923077 99.2115384615385 30650 52 

Table 6.6-1 Results for packets with weight 1000 of each queue, average packet weight 100. 

 

 

 

Figure 6.6-1 Latency for packets with weight 1000 of each queue, average packet weight 100. 

 

 QO has the minimum Mean Latency 3230.16 and minimum Max Latency 4946. The 

Mean Latency rate and Max Latency are dramatically increasing in other queues. Hence Q7 

has the maximum Mean Latency 18095.30 and maximum Max Latency 30650. This is a 

consequence of the number of packets enqueuing in a cycle, as in a cycle enqueuing more 

packets than can be served in a cycle. So packets in Q1-Q7 must wait for the next cycles to 

serve. Therefore a bottleneck is happening in these queues. This effect was mostly 

pronounced in lightweight queues with Q7 that have the major problem. Also Q0 served 

more jobs (197) than other queues. Q7 served fewer jobs (52) than other queues. Also 21 

cycles are needed to serve 1000 jobs. Accordingly 210 cycles are needed to serve 10000 

jobs. 
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6.7 Scenario 7. Average packet weight 50 for Q0-Q3, average packet weight 

100 for Q4-Q7, minimum queue weight 300, maximum queue weight 1000. 

 We have 8 queues as above. The weights of the queues have been assigned as 

follows: Q0:1000, Q1:900, Q2:800, Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300. The 

weights of the packets that are enqeued into queues are provided by the Poisson 

distribution. The queues 0, 1, 2 and 3 the average weights of packets are 50. The queues 4, 

5, 6 and 7 the average weights of packets are 100. So in Q0, above 20 packets with 

maximum total weight equal to 1000 are enqeued, in Q1 above 18 packets with maximum 

total weight equal to 900 are enqeued, and so on for queue 2 and 3. Q4 has weight 600, so 

no more than 6 packets with maximum total weight equal to 600 are enqeued, in Q5 above 

5 packets with maximum total weight equal to 500 are enqeued, and so on for queue Q4 

and Q7. In all cases the packets are enqeued just before the new cycle starts. This means 

that all queues are empty when the new packets are inserted. Moreover, we assume an 

additional delay of 2 time quanta of each job, because reading, writing and transfer delay. 

 Table 6.7-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of 

serviced Jobs, for 10037 total serviced jobs, in 101 cycles. 

Queue  Mean Latency Mean Weight Max Latency Number of Jobs 

0 4392.73860182371 49.9620060790274 6626 1974 

1 4026.76063829787 49.738829787234 6539 1880 

2 3911.38951521984 49.7519729425028 6498 1774 

3 3818.30796884362 49.8933493109647 6352 1669 

4 2156.60342555995 99.6758893280632 4421 759 

5 2107.1946403385 100.056417489422 4412 709 

6 2075.47734138973 99.404833836858 4119 662 

7 2011.12786885246 99.6590163934426 4135 610 

Table 6.7-1 Results for packets with minimum queue weight 300, maximum queue weight 1000, 

 average packet weight 50 for Q0-Q3, average packet weight 100 for Q4-Q7. 
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Figure 6.7-1 Latency for packets with minimum queue weight 300, maximum queue weight 1000, 

average packet weight 50 for Q0-Q3, average packet weight 100 for Q4-Q7. 

 

 The Mean Latency between Q0, Q1, Q2 and Q3 ranges between 3818,30 and 

4392,73. Also Max Latency ranges between 6352 and 6626. Q0 has the maximum Mean 

Latency and Max Latency. Q3 has the minimum Mean Latency and minimum Max Latency. 

But Q0 has services most jobs, 1974, rather Q3 which has serviced 1669 jobs, of about 50 

each. 

 For Q4, Q5, Q6 and Q7 the Mean Latency ranges between 2011,12 and 2156,60. Also 

Max Latency ranges between 4135 and 4421. Q4 has the maximum Mean Latency and 

maximum Max Latency. Q7 has the minimum Mean Latency and Q6 has the minimum Max 

Latency. But Q4 has services most jobs, 759, rather Q7 which has serviced 610 jobs, of about 

100 each. 

 From all queues Q0 has the maximum Mean Latency and Max Latency. Q7 has the 

minimum Mean Latency and Max Latency. But Q0 services most jobs 1974, of 50 each, 

rather Q7 which services 610 jobs, of 100 each. 

 So if we have many small jobs we will choose Q0. If we have fewer small jobs and we 

care about latency we will choose Q3. If we have many large jobs we will choose Q4. If we 

have fewer large jobs and we care about latency we will choose Q7. 
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6.8 Scenario 8. Average packet weight 100 for Q0-Q3, average packet weight 

50 for Q4-Q7, minimum queue weight 300, maximum queue weight 1000. 

 We have 8 queues as above. The weights of the queues have been assigned as 

follows: Q0:1000, Q1:900, Q2:800, Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300. The 

weights of the packets that are enqeued into queues are provided by the Poisson 

distribution. For queues 0, 1, 2 and 3 the average weights of packets are 100. The queues 4, 

5, 6 and 7 the average weights of packets are 50. So in Q0, above 10 packets with maximum 

total weight equal to 1000 are enqeued, in Q1 above 9 packets with maximum total weight 

equal to 900 are enqeued, and so on for queue 2 and 3. Q4 has weight 600, so about 12 

packets with maximum total weight equal to 600 are enqeued, in Q5 above 10 packets with 

maximum total weight equal to 500 are enqeued, and so on for queues Q4 and Q7. In all 

cases the packets are enqeued just before the new cycle starts. This means that all queues 

are empty when the new packets are inserted. Moreover, we assume an additional delay of 

2 time quanta of each job, because reading, writing and transfer delay. 

 Table 6.8-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of 

serviced Jobs, for 10051 total serviced jobs, in 110 cycles. 

Queue  Mean Latency Mean Weight Max Latency Number of Jobs 

0 2776.37523809524 99.7114285714286 5676 1050 

1 2713.11212121212 100.083838383838 5564 990 

2 2673.33724653148 99.6029882604056 5377 937 

3 2629.11173814898 99.8092550790068 5393 886 

4 4295.09613130129 49.8886283704572 6608 1706 

5 3804.53875 49.86 6619 1600 

6 3650.17222963952 49.6829105473965 6493 1498 

7 3485.12066473988 49.7832369942197 6387 1384 

 

 

 

Table 6.8-1 Results for packets with minimum queue weight 300, maximum queue weight 1000, average 

packet weight 100 for Q0-Q3, average packet weight 50 for Q4-Q7. 

 



 

 

44 

 

 

Figure 6.8-1 Latency for packets with minimum queue weight 300, maximum queue weight 

1000, average packet weight 100 for Q0-Q3, average packet weight 50 for Q4-Q7. 

 

 The Mean Latency between Q0, Q1, Q2 and Q3 ranges between 2629,11 and 

2776,35. Also Max Latency ranges between 5676 and 5377. Q0 has the maximum Mean 

Latency and Max Latency. Q3 has the minimum Mean Latency and Q2 has the minimum 

Max Latency. But Q0 has serviced most jobs, 1050, rather than Q3 which has serviced 886 

jobs, of about 100 each. 

 For Q4, Q5, Q6 and Q7 the Mean Latency ranges between 3485,12 and 4295,09. Also 

Max Latency ranges between 6387 and 6619. Q4 has the maximum Mean Latency. Q5 

maximum Max Latency, Q4 is next with very small difference (6608). Q7 has the minimum 

Mean Latency and the minimum Max Latency. But Q4 has serviced most jobs, 1706, rather 

Q7 which has serviced 1384 jobs, of about 50 each. 

 So if we have many small jobs we will choose Q4. If we have fewer small jobs and we 

care about latency we will choose Q7. If we have many large jobs we will choose Q1. If we 

have fewer large jobs and we care about latency we will choose Q3. 

6.9 Scenario 9. Average packet weight 100, insert 3 new packets every 800 

quanta, minimum queue weight 300, maximum queue weight 1000. 

 The scenario is based on the following assumptions. Suppose we have 8 queues. 

Queue 0 (Q0) has the largest weight and queue 7 (Q7) the minimum weight. The weights of 

the queues have been assigned as follows: Q0:1000, Q1:900, Q2:800, Q3:700, Q4:600, 

Q5:500, Q6:400 and Q7:300. This means that Q0 can serve packets with total weight at most 
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1000, Q1 at most 900, and so on. The maximum total weight that can service in a cycle is the 

sum of the weights of all queues, which is 5200.  

 The weights of the packets that are enqeued into queues are provided by the 

Poisson distribution. The weight represents the execute time quanta of each packet. In our 

example the average weights of packets are 100. The new packets are enqueued every 800 

quanta. Τhe total number of new packets is 3 for each queue. This means that the packets 

are enqeued during the cycle and that queues are non empty when the new packets are 

inserted. So the new packets will be served in the next cycle. Additionally the enqueuing of 

packets take place about 6,5 times per cycle. This means that in each cycle totally 19 

packets, with 1900 total weights are enqueued in each queue. Hence in each queue equeue 

more packets than can be serviced are enqueued. 

 Moreover, we assume an additional delay of 2 time quanta of each job, because of 

reading, writing and transfer delay. 

 Table 6.9-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of 

serviced Jobs, for 10016 total serviced packets. 

 

Queue  Mean Latency Mean Weight Max Latency Number of Jobs 

0 93397.5945945946 99.2607607607608 179038 1998 

1 139561.345546787 100.033258173619 272308 1774 

2 180265.377394636 99.8690932311622 359649 1566 

3 226233.677753141 100.311899482631 449688 1353 

4 270598.750437828 100.039404553415 537827 1142 

5 309950.241596639 99.3518907563025 617593 952 

6 354316.690277778 100.319444444444 714030 720 

7 400926.692759296 100.195694716243 800971 511 

Table 6.9-1 Average packet weight 100, insert 3 new packets every 800 quanta, minimum queue weight 

300, maximum queue weight 1000. 
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Figure 6.9-1 Latency for average packet weight 100, insert 3 new packets every 800 quanta,  

minimum queue weight 300, maximum queue weight 1000. 

 

 From the above table we can understand that in such case, the queue with 

maximum weight (Q0, 1000) enjoys the minimum latency and the maximum number of 

serviced jobs. Q7 serviced the fewest jobs with the maximum latency. So if we desired many 

jobs to service with the minimum latency we would choose Q0. Otherwise if we choose Q7 

then fewer jobs will have to wait for more service cycles to complete. In total we have 209 

service cycles and 10016 total serviced jobs are submitted. 

6.10 Scenario 10. Average packet weight 100, insert 3 new packets every 800 

quanta, minimum queue weight 650, maximum queue weight 1000. 

 We have 8 queues. Queue 0 (Q0) has the largest weight and queue 7 (Q7) the 

minimum weight. The weights of the queues have been assigned as follows: Q0:1000, 

Q1:950, Q2:900, Q3:850, Q4:800, Q5:750, Q6:700 and Q7:650. This means that Q0 can serve 

packets with total weight at most 1000, Q1 at most 950, and so on. The maximum total 

weight that can service in a cycle is the sum of the weights of all queues, which is 6600.  

 The weights of the packets that are enqeued into queues are provided by the 

Poisson distribution. The weight represents the execute time quanta of each packet. In our 
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example the average weights of packets are 100. So the new packets will be served in the 

next cycle. 

 3 new packets are enqueued every 800 quanta. This means that the packets are 

enqeued during the cycle and that queues are non empty when the new packets are 

inserted. Additionally the enqueuing of packets take place about 8 times per cycle. This 

means that in each cycle totally 24 packets, with 2400 total weights, are enqueued in each 

queue. Hence in each queue are equeued more packets than can be serviced.  

 Moreover, we assume an additional delay of 2 time quanta of each job, because of 

reading, writing and transfer delay. 

 Table 6.10-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of 

serviced Jobs, for 10035 total serviced packets and 162 service cycles  

Queue  Mean Latency Mean Weight Max Latency Number of Jobs 

0 190076.655642023 99.6634241245136 375360 1542 

1 207838.589690722 100.039175257732 411114 1455 

2 223753.073454545 99.8138181818182 444903 1375 

3 239614.865637066 100.350579150579 477960 1295 

4 258385.193574959 100.000823723229 511825 1214 

5 274210.406660824 99.4609991235758 542454 1141 

6 292585.232535885 100.444019138756 582382 1045 

7 309263.135330578 99.7944214876033 614371 968 

Table 6.10-1 Average packet weight 100, insert 3 new packets every 800 quanta, minimum queue weight 650, 

maximum queue weight 1000. 

 

 

 As in scenario 9 the queue with maximum weight (Q0, 1000) enjoys the minimum 

latency and the maximum number of serviced jobs. Q7 serviced the fewest jobs with the 

maximum latency. So if we desired many jobs to service with the minimum latency we 

would choose Q0. Otherwise if we choose Q7 then fewer jobs will have to wait for more 

time to be completed. In total we have 209 service cycles and 10034 total serviced jobs are 

submitted. 
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 In comparison with scenario 9 (where about 10000 packets were served), Q0-Q3 

have greater latency and fewer jobs served. On the other hand, Q3-Q7 have less latency but 

more jobs served. Although the serviced packets are almost the same the number of cycle is 

less (162 instead of 209). If we assume the same number of cycle then more jobs per queue 

will be served, in comparison to scenario 9.  This is due to queues weight, which is greater in 

scenario 10, than in scenario 9. 

6.11 Scenario 11. Average packet weight 50, insert 3 new packets every 800 

quanta, minimum queue weight 650, maximum queue weight 1000. 

 We have 8 queues. Queue 0 (Q0) has the largest weight and queue 7 (Q7) the 

minimum weight. The weights of the queues have been assigned as follows: Q0:1000, 

Q1:950, Q2:900, Q3:850, Q4:800, Q5:750, Q6:700 and Q7:650. This means that Q0 can serve 

packets with total weight at most 1000, Q1 at most 950, and so on. The maximum total 

weight that can service in a cycle is the sum of the weights of all queues, which is 6600.  

 The weights of the packets that are enqeued into queues are provided by the 

Poisson distribution. The weight represents the execute time quanta of each packet. In our 

example the average weights of packets are 50. So the new packets will be served in the 

next cycle. 
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Figure 6.10-1 Latency for average packet weight 100, insert 3 new packets every 800 quanta, minimum 

queue weight 650, maximum queue weight 1000.  
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 3 new packets are enqueued every 800 quanta. This means that the packets are 

enqeued during the cycle and that queues are non empty when the new packets are 

inserted. Additionally the enqueuing of packets take place about 8 times per cycle. This 

means that in each cycle totally 24 packets, with 2400 total weights, are enqueued in each 

queue. Hence in each queue are equeued more packets than can be serviced. 

 Moreover, we assume an additional delay of 2 time quanta of each job, because of 

reading, writing and transfer delay. 

 Table 6.11-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of 

serviced Jobs, for 10075 total serviced packets. 

Queue  Mean Latency Mean Weight Max Latency Number of Jobs 

0 5280.03301886792 49.2767295597484 6781 1272 

1 5315.37716535433 50.3748031496063 6491 1270 

2 5368.7474429583 50.1054287962234 6633 1271 

3 5418.1332807571 49.98738170347 6493 1268 

4 5470.12066246057 50.057570977918 6549 1268 

5 5544.24861878453 49.8468823993686 6999 1267 

6 6534.18304278922 50.4112519809826 8802 1262 

7 20283.7593984962 49.7852965747703 33894 1197 

Table 6.11-1 Average packet weight 50, insert 3 new packets every 800 quanta, minimum queue weight 650, 

maximum queue weight 1000. 

 

 

 From the above table we can work out that in such case, the queue with maximum 

weight (Q0, 1000) enjoys the minimum latency and the maximum number of serviced jobs, 

but with little difference compared with queues Q1-Q5. Q7 serviced the fewest jobs, as 

expected, with the maximum latency, about five times greater than Q0. Q6 achieves better 

performance in relation to Q7. So if we desired many jobs to be serviced with the minimum 

latency we would choose Q0 and then one queue of Q1-Q5. Otherwise if we choose Q7, 

then fewer jobs will have to wait for more time to complete. Also Q7 achieves the worst 

performance due to large number of enqeuing packets (24 per cycle), while just 13 packets 

may be serviced per cycle. In total we have 95 service cycles and 10075 total serviced jobs 

are submitted. 
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Figure 6.11-1 Latency for average packet weight 50, insert 3 new packets every 800 quanta, minimum queue 

weight 650, maximum queue weight 1000. 

6.12 Scenario 12. Average packet weight 50, insert 3 new packets every 800 

quanta, minimum queue weight 300, maximum queue weight 1000. 

 As in the previous scenario, but in this example the weights of the queues have been 

assigned as follows: Q0:1000, Q1:900, Q2:800, Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300. 

The average weights of packets are 50. Table 6.12-1 shows the Mean Latency, Mean Weight, 

Max Latency, and Number of serviced Jobs, for 10036 total serviced packets, in 208 cycles. 

Queue Mean Latency Mean Weight Max Latency Number of Jobs 

0 2252.02821316614 49.2766457680251 5232 1276 

1 2284.76983503535 50.3794186959937 5066 1273 

2 2334.9677672956 50.1147798742138 4949 1272 

3 2383.08818897638 49.9370078740157 4981 1270 

4 2430.23599052881 50.0568271507498 5034 1267 

5 2516.33412322275 49.8515007898894 5276 1266 

6 3039.63370253165 50.3773734177215 9051 1264 

7 34546.206445993 49.8214285714286 48875 1148 

Table 6.12-1 1 Average packet weight 50, insert 3 new packets every 800 quanta, minimum queue weight 300, 

maximum queue weight 1000. 
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Figure 6.12-1 1 Latency for average packet weight 50, insert 3 new packets every 800 quanta, minimum 

queue weight 300, maximum queue weight 1000. 

 

 In comparison with scenario 11 208 cycles were needed for 10036 packets to be 

served rather 95 cycles for 10075 packets to be served. This seems reasonable since the 

weights of packets are less so more cycles are needed to serve the same number of jobs. The 

queue with maximum weight (Q0, 1000) enjoys the maximum number of serviced jobs and 

the minimum latency, but with little difference compared with queues Q1-Q5. Q7 serviced 

the fewest jobs, as expected, with the maximum latency, about five times greater than Q0. 

This is due to the large number of enqeuing packets (24 per cycle) while only 13 packets may 

be serviced per cycle. Q6 achieves better performance in relation to Q7. In total we have 208 

service cycles and 10036 total serviced jobs are submitted. 

 The following measurements are based on the same scenario. At the beginning all 

the queues are full with the maximum number of packets that can be served in a cycle. Each 

time a packet is dequeued then a new packet is enqueued in the same queue. In this way the 

queues are always full. The new packets will be served in the next cycle. 

6.13 Scenario 13. Average packet weight 100, minimum queue weight 300, 

maximum queue weight 1000. Each time a packet is dequeued then a new 

packet is enqueued in the same queue. 

 Suppose we have 8 queues. Queue 0 (Q0) has the largest weight and queue 7 (Q7) 

the minimum weight. The weights of the queues have been assigned as follows: Q0:1000, 

Q1:900, Q2:800, Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300. This means that Q0 can serve 
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packets with total weight at most 1000, Q1 at most 900, and so on. The maximum total 

weight that can service in a cycle is the sum of the weights of all queues, which is 5200.  

 The weights of the packets that are enqeued into queues are provided by the 

Poisson distribution. The weight represents the execute time quanta of each packet. In our 

example the average weights of packets are 100. Table 6.13-1 shows the Mean Latency, 

Mean Weight, Max Latency, and Number of serviced Jobs, for 10003 total serviced packets, 

in 225 cycles.  

Queue  Mean Latency Mean Weight Max Latency Number of Jobs 

0 4426.63968795709 98.2662116040956 5572 2051 

1 4423.33920704846 98.454295154185 4768 1816 

2 4422.75031446541 98.8509433962264 4778 1590 

3 4421.88619676946 98.298825256975 4768 1362 

4 4420.99383259912 98.2105726872247 4779 1135 

5 4419.76670317634 98.7338444687842 4755 913 

6 4416.56304985337 99.0630498533724 4751 682 

7 4417.45374449339 99.2599118942731 4755 454 

Table 6.13-1 Each time a packet is dequeued then a new packet is enqueued in the same queue. Average 

packet weight 100, minimum queue weight 300, maximum queue weight 1000. 

 

 

 

Figure 6.13-1 Latency for each time a packet is dequeued then a new packet is enqueued in the same queue. 

Average packet weight 100, minimum queue weight 300, maximum queue weight 1000. 
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 The Mean Latency is approximately the same for all queues. Q0 has the maximum 

latency. This occurs in the first cycle so it isn’t representative. Q0 has serviced most jobs, 

2051, next is Q1 which has serviced 1816 jobs, and so on. Q7 has serviced fewer jobs, 454. 

So Q0 has the best performance followed by the other queues. 

6.14 Scenario 14. Average packet weight 50, minimum queue weight 300, 

maximum queue weight 1000. Each time a packet is dequeued then a new 

packet is enqueued in the same queue. 

 As in the previous scenario, but in this example the average weights of packets are 

50. Table 6.14-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of 

serviced Jobs, for 10065 total serviced packets, in 106 cycles.  

Queue  Mean Latency Mean Weight Max Latency Number of Jobs 

0 4837.83384615385 48.9389743589744 5615 1950 

1 4832.87843137255 48.5058823529412 5233 1785 

2 4831.48795944233 48.8384030418251 5241 1578 

3 4829.6754194019 48.4106491611962 5230 1371 

4 4826.44069264069 48.0337662337662 5234 1155 

5 4824.74661105318 48.8571428571429 5227 959 

6 4818.84124830393 48.4803256445048 5217 737 

7 4815.26603773585 48.3169811320755 5207 530 

Table 6.14-1 Each time a packet is dequeued then a new packet is enqueued in the same queue. Average 

packet weight 50, minimum queue weight 300, maximum queue weight 1000. 
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Figure 6.14-1 Latency for each time a packet is dequeued then a new packet is enqueued in the 

same queue. Average packet weight 50, minimum queue weight 300, maximum queue weight 1000 
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 The conclusions from Table 6.14-1 are the same as in scenario 13. Q0 has serviced 

most jobs, 1950, next is Q1 which has serviced 1785 jobs, and so on. Q7 has serviced fewer 

jobs, 530. So Q0 has the best performance followed by the other queues. 

6.15 Scenario 15. Average packet weight 100, minimum queue weight 650, 

maximum queue weight 1000. Each time a packet is dequeued then a new 

packet is enqueued in the same queue. 

 The weights of the queues have been assigned as follows: Q0:1000, Q1:950, Q2:900, 

Q3:850, Q4:800, Q5:750, Q6:700 and Q7:650. The maximum total weight that can be 

serviced in a cycle is the sum of the weights of all queues, which is 6600. This implies that 

more jobs can be served in a cycle, compared to the previous scenarios where the total 

weight was 5200. In our example, the average weights of packets are 100. Table 6.15-1 

shows the Mean Latency, Mean Weight, Max Latency, and Number of serviced Jobs, for 

10041 total serviced packets, in 178 cycles.  

Queue Mean Latency Mean Weight Max Latency Number of Jobs 

0 5727.28176100629 98.3012578616352 6986 1590 

1 5728.09986595174 98.5764075067024 6281 1492 

2 5722.24184397163 98.2170212765957 6275 1410 

3 5723.66559485531 99.1744372990354 6278 1244 

4 5720.85227272727 98.6298701298701 6281 1232 

5 5728.53405017921 98.5779569892473 6283 1116 

6 5719.83996212121 98.4611742424242 6278 1056 

7 5724.15427302997 98.2297447280799 6281 901 

Table 6.15-1 Each time a packet is dequeued then a new packet is enqueued in the same queue. Average 

packet weight 100, minimum queue weight 650, maximum queue weight 1000. 
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Figure 6.15-1 Latency for each time a packet is dequeued then a new packet is enqueued in the same queue. 

Average packet weight 100, minimum queue weight 650, maximum queue weight 1000. 

 

 From the above table we can understand that in such case, the Mean Latency is 

approximately the same for all queues. Q0 has the maximum latency. This occurs in the first 

cycle so it isn’t representative. Q0 has serviced most jobs, 1590, next is Q1 which has 

serviced 1492 jobs, and so on. Q7 has serviced fewer jobs, 901. So Q0 has the best 

performance followed by the other queues. 

 In comparison with scenario 13, the only difference is in the weights of the queues, 

since the packets have the same Mean Weight, which is 100. As a result, in scenario 14 Q0, 

Q1, Q2, Q3 have served fewer jobs than scenario 13. Moreover Q4, Q5, Q6, Q7 have served 

more jobs than in scenario 13. Such a small decrease in the weight of queues has result in 

slight changes in the total number of serviced packets between neighboring tails. 

6.16 Scenario 16. Average packet weight 50, minimum queue weight 650, 

maximum queue weight 1000. Each time a packet is dequeued then a new 

packet is enqueued in the same queue. 

 As in the previous scenario, the weights of the queues have been assigned as 

follows: Q0:1000, Q1:950, Q2:900, Q3:850, Q4:800, Q5:750, Q6:700 and Q7:650. But in this 

example the average weights of packets are 50. Table 6.16-1 shows the Mean Latency, 

Mean Weight, Max Latency, and the Number of serviced Jobs, for 10041 total serviced 

packets, in 82 cycles. 
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Queue Mean Latency Mean Weight Max Latency Number of Jobs 

0 6172.39896707553 48.5842479018722 7090 1549 

1 6165.38143631436 48.579945799458 6708 1476 

2 6164.97780959198 48.4874731567645 6716 1397 

3 6163.29543634908 48.8783026421137 6697 1249 

4 6163.16530944625 48.4771986970684 6690 1228 

5 6160.36271808999 49.0982552800735 6686 1089 

6 6157.75609756098 48.4634146341463 6662 1066 

7 6155.9179331307 48.2330293819656 6657 987 

Table 6.16-1 Each time a packet is dequeued then a new packet is enqueued in the same queue. Average 

packet weight 50, minimum queue weight 650, maximum queue weight 1000. 

 

 

 

 

 From table 6.16-1 we can figure out that in such case, the latency is Q0 has the 

maximum Mean Latency and Q7 the minimum, but the difference between them is only 17 

quanta. This occurs in the first cycle so it isn’t representative. Q0 has serviced most jobs, 

1549, next is Q1 which has serviced 1476 jobs, and so on. Q7 has serviced fewer jobs, 987. So 

Q0 has the best performance followed by the other queues. 

 In comparison with scenario 15, the only difference is in the weights of the packets, 

which is 50, whereas in scenario 15 it is 100. In both cases the number of serviced job is 

almost the same. But in scenario 15 the Mean Latency is less. Therefore larger weight of 

packet accrues better Mean Latency. 
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Figure 6.16-1 Latency for each time a packet is dequeued then a new packet is enqueued in the same 

queue. Average packet weight 50, minimum queue weight 650, maximum queue weight 1000. 
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 In comparison with scenario 14 the only difference is in the weights of the queues, 

since the packets have the same Mean Weight, which is 50. As a result, in scenario 16 Q0, 

Q1, Q2, Q3 have served fewer jobs than scenario 14. Also Q4, Q5, Q6, Q7 have served more 

jobs than scenario 14.  So a small decrease in the weight of the queues has as a result the 

small changes in the total number of serviced packets between neighboring tails. 



 

 

58 

 

7. Conclusions and Future extension 

 In comparison to algorithms presented in related works, the algorithm now 

presented resembles Weighted Round Robin and Deficit Round Robin. However, both 

algorithms have been recommended for use in computer networks. WRR has been 

proposed for asynchronous transfer mode (ATM) networks and DRR for servicing queues in 

a router (or gateway). A necessary condition for WRR is the fixed size of packet. Each packet 

needs to have the same size in all queues. In contrast, the proposed algorithm is 

independent of the packet size. Also DRR services packets of different size but at the same 

time it services all packets together. Our algorithm, however, services one packet from a 

queue at a time. But in total, more than one packet will be served in proportion to queue 

weight. The enqueue time of serviced packets is also unclear for WRR and DRR. The above 

algorithms served all the packets independent of the enqueue time. For reason of fairness, 

though, the proposed algorithm serves only the packets that have been queued before a 

new cycle has started. 

 The algorithm combines different algorithmic techniques. Each separate queue is a 

queue FIFO. Ιt doesn’t require a sorted priority queue. So it is easy to be implemented and 

at the same time no computing power for classification is wasted. There is no prioritization 

which means that each process may eventually be completed, therefore, no starvation. All 

queues are organized as a multi-queue technique. Each queue has different total weight. 

Hence the total number of serviced job is proportional to the total weight for each queue.  

In a cycle the maximum total weight that can be served is at most equal to the sum of the 

weights of queues. For reasons of fairness the scheduler serves only the packets that have 

been enqueued when the cycle started. New packets enqueuing after the cycle is started 

will serve in the next cycle. When a new cycle started the first queue (the queue with the 

maximum weight) isn’t examined first but the control continues from the next queue where 

it left off the previous cycle. Otherwise the lower weight tails will be served too late. 

Admittedly this favors the queues with lower weight in case of simultaneously enqueuing of 

new packets to all queues or enqueuing new packets just before the start of the new cycle. 

However, in a real time system this is rarely case, since in such systems the enqueue of a 

packet is continuously performed and furthermore not at the same time for all queues. 
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 The queue with the highest weight serves larger number of packets. The queue with 

the lowest weight serves less number of packets. But the tail with the largest weight has a 

greater latency per cycle and the queue with less weight has less latency if the packets are 

enqueued just before the new cycle starts. If the weight of the packet (packet wi) is smaller 

the difference in the average latency between neighboring queues is more balanced. If the 

packets are enqueued during the cycle, then the queue with largest weight has less mean 

latency. Also less weight of packets has as a result more packets to be serviced in the queue 

per cycle. Moreover the increase of the weight of the tail has as a result greater number of 

serviced jobs. 

 If in the tails are enqueued packets weighing more than the weight of a queue, then 

there is bottleneck. The problem is most acute in the lower weight queues where major 

service delays occur. If the weights packets follow a normal distribution and the enqueued 

packets have less weight than the weight of the queues the algorithm behaves like WRR 

with small differences in the average latency and the total number of performing packet per 

queue. 

 The timing of the enqeuing of packets is important to the performance of the 

algorithm. If new packets are enqueued at the beginning of the cycle they will serve in the 

next cycle so it will have the greatest latency. The ideal insertions of new packets take place 

just before the start of the new cycle, something hard in real-time systems. Moreover the 

selection of the queue for the enqueue of packets affects the performance of the algorithm. 

If there are several packets to serve, it is better to select heavy queues. If we are interested 

in the execution time of a process it is best queues to select with less weight. 

 Depending on the policy we want to follow we can make various modifications to the 

algorithm. In our algorithm the new enqueuing packets are not served during the same 

cycle. For reasons of fairness they will be served in the next cycle. Another idea is always to 

serve the new packets until the permitted weight of the queue, and not to wait for the next 

cycle. Another aspect is to serve the new packets until the queue weight; but if the queue 

becomes empty during the cycle without achieving the maximum serviced weight and then 

new packets are enqueued, these new packets will be served in the next cycle. This is easily 

done in our algorithm if the control of the field order is not to take place. Another 
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modification, similar to deficit round robin, is the remaining weight that is not served during 

the cycle to be added to the weight of the next cycle. However, in such case, the maximum 

serviced weight will be not fixed in a cycle. 
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