
WEIGHTED SCHEDULING IN HETEROGENEOUS ARCHITECTURES FOR

OFFLOADING VARIABLE-LENGTH KERNELS

by

PRATIKAKIS MENELAOS

B.A. CSD, University of Crete, 1998

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF ELECTRONIC ENGINEERING

SCHOOL OF APPLIED SCIENCES

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE

2015

Approved by:

Major Professor
Kornaros George

ii

Abstract

 Heterogeneous System Architecture (HSA) is a type of computer processor

architecture that integrates different processor architectures, for example central

processing units and graphics processors, on the same bus with shared tasking and

memory. These systems have different processes from different sources, with

different priorities and weights, which are required to be performed by different

processors architectures.

 The above is achieved by scheduling. Scheduling is the process by which

processes are given access to system resources (e.g. processor cycles,

communications bandwidth). The demand for fast computer systems, the execution

of multiple processes simultaneously (multitasking) and requirement for transmitting

multiple flows simultaneously (multiplexing) have as a result the need for an efficient

scheduling algorithm. The basic function of the scheduler is to determine which

process will be run when there are several runnable processes. Therefore the

scheduler choices have an impact on the utilization of system resources and other

performance parameters. There exists a number of CPU scheduling algorithms like

First Come First Serve, Shortest Job First Scheduling, Round Robin scheduling,

Priority Scheduling etc, but due to a number of disadvantages these are rarely used

in real time operating systems except Round Robin scheduling. Especially in a

heterogeneous multicore system with existence of multiple queues with different

priority and weight each, the scheduling/ dispatching of each queue separately and

on the whole, is a critical issue. The purpose is to find, study and implement in a

program language such us C, an algorithm to achieve a better management in such

queues.

iii

Σύνοψη

 Σε ένα ετερογενές σύστημα αρχιτεκτονικής συνδυάζονται διαφορετικές

αρχιτεκτονικές επεξεργαστών, για παράδειγμα, κεντρικών μονάδων επεξεργασίας

και επεξεργαστές γραφικών, οι οποίοι μπορεί να συνδέονται στον ίδιο δίαυλο, να

μοιράζονται διεργασίες και να έχουν κοινόχρηστη μνήμη. Τα συστήματα αυτά

δέχονται διαφορετικές διαδικασίες από διάφορες πηγές, με διαφορετικές

προτεραιότητες και βάρη, οι οποίες για την εκτέλεση τους απαιτούν διαφορετικές

αρχιτεκτονικές επεξεργαστών.

 Τα παραπάνω επιτυγχάνονται με την χρονοδρομολόγηση. Η

χρονοδρομολόγηση είναι η διαδικασία με την οποία οι διεργασίες αποκτούν

πρόσβαση στους πόρους του συστήματος (π.χ. επεξεργαστή, μνήμη κ.α). Η ανάγκη

για έναν αλγόριθμο χρονοδρομολόγησης προκύπτει από την απαίτηση γρήγορων

υπολογιστών συστημάτων για την επίτευξη πολυεπεξεργασίας (εκτέλεση

περισσότερων από μία διεργασία κάθε φορά) και πολυπλεξίας (ταυτόχρονη

μετάδοση πολλαπλών ροών). Η χρονοδρομολόγηση είναι μια θεμελιώδης

λειτουργία του λειτουργικού συστήματος που καθορίζει ποια διαδικασία θα

εκτελεστεί, όταν υπάρχουν πολλές εκτελέσιμες διαδικασίες.

 Ο τρόπος χρονοδρομολόγησης της CPU είναι ιδιαίτερα σημαντικός επειδή

έχει αντίκτυπο στην αξιοποίηση των πόρων του συστήματος και στις παραμέτρους

των επιδόσεων. Υπάρχει μια πληθώρα από αλγόριθμους χρονοδρομολόγησης όπως

η ουρά προτεραιότητας, η συντομότερη εργασία πρώτη, η χρονοδρομολόγηση

Round Robin, η χρονοδρομολόγηση με βάση την προτεραιότητα κλπ, αλλά εξαιτίας

μιας σειράς από μειονεκτήματα αυτές οι τεχνικές σπάνια χρησιμοποιούνται στα

λειτουργικά συστήματα πραγματικού χρόνου, εκτός της χρονοδρομολόγησης Round

Robin. Ειδικά σε ένα ετερογενές σύστημα πολλαπλών πυρήνων, με την ύπαρξη

πολλαπλών ουρών, με διαφορετική προτεραιότητα και βάρος η καθεμία, η

διαδικασία χρονοδρομολόγησης/αποστολής διεργασιών από κάθε ουρά ξεχωριστά

αλλά στο σύνολό τους, είναι ένα κρίσιμο ζήτημα.

iv

 Ο σκοπός της παρούσας εργασίας ήταν να βρεθεί, μελετηθεί και υλοποιηθεί

σε μια γλώσσα προγραμματισμού, όπως η C, ένας αλγόριθμος, βασισμένος στα

βάρη των εργασιών, για να επιτευχθεί καλύτερη διαχείριση τέτοιων ουρών.

v

Table of Contents

Abstract ..ii

Σύνοψη ..iii

Table of Contents ...v

List of Figures...viii

List of Tables...x

Acknowledgments ..xii

1 Introduction.. 1

1.1 Research questions and methodology .. 1

2 Objective of the Study .. 3

3 Heterogeneous architecture .. 4

3.1 Types of heterogeneous architecture ... 6

3.2.1 CUDA-OPEN CL ... 10

4 Background on scheduling algorithms ... 12

4.1 General principles of Scheduling Algorithms .. 12

4.2 Scheduling Criteria... 13

4.3 General Scheduling algorithms.. 14

4.3.1 First Come First Served (FCFS).. 14

4.3.2 Shortest Job First (SJB) [14] .. 15

4.3.3 Priority scheduling.. 16

4.3.4 Multilevel queue scheduling .. 17

4.3.5 Multilevel feedback queue scheduling... 18

4.3.6 Round Robin ... 19

4.3.7 Weighted Round Robin .. 20

4.3.8 Deficit Round Robin.. 20

4.4 Heterogeneous scheduled techniques.. 21

4.5 Heterogeneous Scheduling Categories ... 21

4.5.1 Static and dynamic Schedulers... 22

4.5.2 Clustering, Listing, Duplication-based and Guided-random schedulers 22

4.6 Basic Heterogeneous Scheduling Algorithms.. 24

4.6.1 HEFT.. 24

4.6.2 CPOP ... 24

5. Implementation... 26

vi

5.1 Basic Idea... 26

5.2 Algorithm Description ... 26

6 Measurements.. 31

6.1 Scenario 1. As many packets as can be served in a cycle, average packet weight 100,

minimum queue weight 300, maximum queue weight 1000. .. 31

6.2 Scenario 2. As many packets as can be served in a cycle, average packet weight 50,

minimum queue weight 300, maximum queue weight 1000. .. 33

The weight of each queue, the total weight, the mode and the time of enqueing packets

are the same as previous. The only difference is the weight of each packet. The weight is

given by Poisson distribution; with distributed value 50, rather 100 in the previous

scenario. So Q0 has weight 1000 and can accept maximum 20 jobs of 50 each, rather 10

jobs in scenario1, and so on. ... 33

6.3 Scenario 3. As many packets as can be served in a cycle, average packet weight 100,

minimum queue weight 650, maximum queue weight 1000. .. 34

6.4 Scenario 4. As many packets as can be served in a cycle, average packet weight 50,

minimum queue weight 650, maximum queue weight 1000. .. 36

6.5 Scenario 5. Average packet weight 100, weight 300 of each queue............................. 37

6.6 Scenario 6. Average packet weight 100, weight 1000 of each queue........................... 39

6.7 Scenario 7. Average packet weight 50 for Q0-Q3, average packet weight 100 for Q4-

Q7, minimum queue weight 300, maximum queue weight 1000....................................... 41

6.8 Scenario 8. Average packet weight 100 for Q0-Q3, average packet weight 50 for Q4-

Q7, minimum queue weight 300, maximum queue weight 1000....................................... 43

6.9 Scenario 9. Average packet weight 100, insert 3 new packets every 800 quanta,

minimum queue weight 300, maximum queue weight 1000. .. 44

6.10 Scenario 10. Average packet weight 100, insert 3 new packets every 800 quanta,

minimum queue weight 650, maximum queue weight 1000. .. 46

6.11 Scenario 11. Average packet weight 50, insert 3 new packets every 800 quanta,

minimum queue weight 650, maximum queue weight 1000. .. 48

6.12 Scenario 12. Average packet weight 50, insert 3 new packets every 800 quanta,

minimum queue weight 300, maximum queue weight 1000. .. 50

6.13 Scenario 13. Average packet weight 100, minimum queue weight 300, maximum

queue weight 1000. Each time a packet is dequeued then a new packet is enqueued in the

same queue. .. 51

6.14 Scenario 14. Average packet weight 50, minimum queue weight 300, maximum

queue weight 1000. Each time a packet is dequeued then a new packet is enqueued in the

same queue. .. 53

vii

6.15 Scenario 15. Average packet weight 100, minimum queue weight 650, maximum

queue weight 1000. Each time a packet is dequeued then a new packet is enqueued in the

same queue. .. 54

6.16 Scenario 16. Average packet weight 50, minimum queue weight 650, maximum

queue weight 1000. Each time a packet is dequeued then a new packet is enqueued in the

same queue. .. 55

7. Conclusions and Future extension .. 58

References... 61

viii

List of Figures

Figure 3-1 A simple HSA platform...5

Figure 3.1-1 Heterogeneous Architectures Under Exploration6

Figure 3.1-2 CPU migration via the in-kernel switcher...7

Figure 3.1-3 heterogeneous multi-processing (MP) ..7

Figure 4.1-1 Queuing diagram for scheduling ...12

Figure 4.3.1-1 First Come First ...14

Figure 4.3.3-1 Priority queuing ...16

Figure 4.3.3-2 Static and dynamic priority..16

Figure 4.3.4-1 Multilevel queuing...17

Figure 4.3.5-1 Multilevel feedback queuing ...18

Figure 4.3.6-1 Context switches in Round Robin..19

Figure 5.2-1 Schematic algorithm description..27

Figure 6.1-1 Latency for as many packets as can be served in a cycle average packet

weight 100, min queue weight 300, max queue weight 1000.32

Figure 6.2-1 Latency for as many packets as can be served in a cycle average packet

weight 50, min queue weight 300, max queue weight 1000.34

Figure 6.3-1 Latency for as many packets as can be served in a cycle average packet

weight 100, min queue weight 650, max queue weight 1000.35

Figure 6.4-1 Latency for as many packets as can be served in a cycle average packet

weight 50, min queue weight 650, max queue weight 1000.37

Figure 6.5-1 Latency for packets with weight 300 of each queue, average packet

weight 100. ...38

Figure 6.6-1 Latency for packets with weight 1000 of each queue, average packet

weight 100 ..40

Figure 6.7-1 Latency for packets with minimum queue weight 300, maximum queue

weight 1000, average packet weight 50 for Q0-Q3, average packet weight 100 for

Q4-Q7..42

Figure 6.8-1 Latency for packets with minimum queue weight 300, maximum queue

weight 1000, average packet weight 100 for Q0-Q3, average packet weight 50 for

Q4-Q7..44

ix

Figure 6.9-1 Latency for average packet weight 100, insert 3 new packets every 800

quanta, minimum queue weight 300. ..46

Figure 6.10-1 Latency for average packet weight 100, insert 3 new packets every 800

quanta, minimum queue weight 650, maximum queue weight 1000.48

Figure 6.11-1 Latency for average packet weight 50, insert 3 new packets every 800

quanta, minimum queue weight 650, maximum queue weight 1000.50

Figure 6.12-1 1 Latency for average packet weight 50, insert 3 new packets every 800

quanta, minimum queue weight 300, maximum queue weight 1000.51

Figure 6.13-1 Latency for each time a packet is dequeued then a new packet is

enqueued in the same queue. Average packet weight 100, minimum queue weight

300, maximum queue weight 1000. ...52

Figure 6.14-1 Latency for each time a packet is dequeued then a new packet is

enqueued in the same queue. Average packet weight 50, minimum queue weight

300, maximum queue weight 1000. ...53

Figure 6.15-1 Latency for each time a packet is dequeued then a new packet is

enqueued in the same queue. Average packet weight 100, minimum queue weight

650, maximum queue weight 1000. ...53

Figure 6.16-1 Latency for each time a packet is dequeued then a new packet is

enqueued in the same queue. Average packet weight 50, minimum queue weight

650, maximum queue weight 1000. ...56

x

List of Tables

Table 3.1-1 Examples of Core+IP Integration ...6

Table 3.1-2 Examples of big-LITTLE heterogeneous multi-soc8-9

Table 6.1-1 Results for as many packets as can be served in a cycle, average packet

weight 100, min queue weight 300, max queue weight 1000.31-32

Table 6.2-1 Results for as many packets as can be served in a cycle, average packet

weight 50, min queue weight 300, max queue weight 1000.33

Table 6.3-1 Results for as many packets as can be served in a cycle, average packet

weight 100, min queue weight 650, max queue weight 1000.35

Table 6.4-1 Results for as many packets as can be served in a cycle, average packet

weight 50, min queue weight 650, max queue weight 1000.36

Table 6.5-1 Results for packets with weight 300 of each queue, average packet

weight 100. ...38

Table 6.6-1 Results for packets with weight 1000 of each queue, average packet

weight 100. ..39-40

Table 6.7-1 Results for packets with minimum queue weight 300, maximum queue

weight 1000, average packet weight 50 for Q0-Q3, average packet weight 100 for

Q4-Q7..41

Table 6.8-1 Results for packets with minimum queue weight 300, maximum queue

weight 1000, average packet weight 100 for Q0-Q3, average packet weight 50 for

Q4-Q7..43

Table 6.9-1 Average packet weight 100, insert 3 new packets every 800 quanta,

minimum queue weight 300, maximum queue weight 1000.45

Table 6.10-1 Average packet weight 100, insert 3 new packets every 800 quanta,

minimum queue weight 650, maximum queue weight 1000.47

Table 6.11-1 Average packet weight 50, insert 3 new packets every 800 quanta,

minimum queue weight 650, maximum queue weight 1000.49

Table 6.12-1 1 Average packet weight 50, insert 3 new packets every 800 quanta,

minimum queue weight 300, maximum queue weight 1000.50

xi

Table 6.13-1 Each time a packet is dequeued then a new packet is enqueued in the

same queue. Average packet weight 100, minimum queue weight 300, maximum

queue weight 1000 ...52

Table 6.14-1 Each time a packet is dequeued then a new packet is enqueued in the

same queue. Average packet weight 50, minimum queue weight 300, maximum

queue weight 1000. ..53

Table 6.15-1 Each time a packet is dequeued then a new packet is enqueued in the

same queue. Average packet weight 100, minimum queue weight 650, maximum

queue weight 1000. ..54

Table 6.16-1 Each time a packet is dequeued then a new packet is enqueued in the

same queue. Average packet weight 50, minimum queue weight 650, maximum

queue weight 1000. ..56

xii

Acknowledgments

 I would like to express my sincere gratitude to Dr. George Kornaros, Lecturer

at the Department of Informatics Engineering of the Technological Educational

Institute of Crete and supervisor of the present master thesis, for the continuous

support of my Msc study and related research, for his patience, motivation, and

immense knowledge. His guidance helped me in all the time of research and writing

of this thesis. I could not have imagined having a better advisor and mentor for my

Msc study.

 I would like to thank my family for supporting me spiritually throughout

writing this thesis as well as my good friend Fr Dimitrios.

October 2015,

Menelaos Pratikakis

1

1 Introduction

 Heterogeneous System Architecture (HSA) is a computer processor architecture that

integrates central processing units and graphics processors on the same bus, with shared

memory and tasks. The GPU has great processing power and the overwhelming majority of

applications and computing tasks exploit the processing power offered by GPUs, therefore

the HSA aims to properly utilize the processing power offered by GPUs. The HSA has

developed from the HSA Foundation, whose founding members are AMD, ARM, MediaTek,

Qualcomm, Texas Instrument, Imagination and Samsung [1]. HSA is widely used in system-

on-chip devices, such as tablets, Smartphones and other mobile devices.

 Scheduling is an increasingly important topic in HSA systems. Scheduling is the

process by which processes are given access to system resources (e.g. processor cycles,

communications bandwidth). The demand for fast computer systems, the execution of

multiple processes simultaneously (multitasking) and requirement for transmitting multiple

flows simultaneously (multiplexing) have as a result the need for an efficient scheduling

algorithm. The basic function of the scheduler is to determine which process will be run

when there are several runnable processes. Therefore the scheduler choices have an impact

on the utilization of system resources and other performance parameters. There exists a

number of CPU scheduling algorithms like First Come First Serve, Shortest Job First

Scheduling, Round Robin scheduling, Priority Scheduling etc, but due to a number of

disadvantages these are rarely used in real time operating systems except Round Robin

scheduling [2].

1.1 Research questions and methodology

 The purpose of the present thesis is the study of the following: a) How a scheduling

algorithm for dispatching jobs to accelerator processors in a heterogeneous system can be

implemented. b) What the behavior of the algorithms on various conditions of executions is.

The structure of the remaining of this thesis is as follows. Firstly the objective of this work is

presented. Next heterogeneous architecture, the architecture of the GPU and the

programming environments of GPU are briefly presented. Afterwards the principles and

criteria of scheduling are analyzed. Sequentially a description of basic scheduling algorithms

is presented. Then the basic idea of our algorithm is analyzed and the way of

2

implementation is described. Next measurements based on specific scenarios are

presented. The last part includes the conclusions of the present work and future proposals.

3

2 Objective of the Study

 The basic idea of the algorithm is as follows. In the context of a multiprogrammed

environment we assume we have N applications, a set NQ of queues with a fixed max weight

(weight_queue) that the system assigns to each queue. The weight of each queue

represents the maximum time quantum allocated to this queue for execution, or the

normalized maximum time quantum. Each application enqueues jobs in queues. The jobs

are dispatched to a hardware accelerator either single or multi-threaded (e.g. GPU). The

queue contains packets with the job attributes, such as pointers to the kernel code and

data, estimated execution time, type, etc.

 The centralized scheduler when deals with a queue with a higher weight

(weight_queue) compared to a queue with a less weight, must serve a number of packets in

proportion to the ratio of their weights. The algorithm cannot service packets with total

weight greater than the weight of the queue (weight_queue). Additionally the total serviced

weight of all queues should be less or equal than the maximum total weight of the

algorithm, which is equal to the sum of all queues weights. When the total maximum weight

of all queues weights has been achieved then a cycle is completed. Hence dequeuing

packets must be enqueued before the cycle starts. If the packets have been enqueued

during the new cycle, they will be served in the next cycles. Essentially, the algorithm

scheduling policy works in Round-Robin fashion and provides weighted fairness for variable-

length packets (i.e., execution time) maintained in multiple queues.

4

3 Heterogeneous architecture

 The progress in semiconductor technology has brought evolving microprocessors

developed for a wide range of applications such as aerospace, power electronics, defense

systems, geosciences, bioinformatics, interactive digital media, cloud computing, etc. In

heterogeneous multi-core systems for specialized purposes, the cores are integrated into

the same chip specific processor/functional units and general-purpose cores [3].

Heterogeneous computing refers to systems that use more than one kind of processor.

Therefore, the opportunity to accelerate emergency applications by running critical tasks on

fast cores is given. This embodiment has advantages in areas such as performance, power

optimization. Especially in the last decade, multi-core processors are increasingly used

because of the high performance they provide, while they have reduced their energy

requirements.

 A heterogeneous computer cluster is more effective than a homogeneous since

some types of processing units perform better than others in certain processing tasks.

Furthermore the closely tied hardware accelerator within a node can reduce communication

requirements by making use of locality data. Overall system performance can be improved

by allowing the heterogeneous cores to work collaboratively on different parts of an

application.

 Therefore commercial operating systems have been improved to support the

parallelism offered by multi-core processors. Furthermore, the need for extensive battery

life in portable devices and high performance, has led to power/efficient performance and

ultra low power small cores (e.g. Intel’s Atom processor). Since available different types of

cores, architectural options when designing a platform are also more. The possibility of

developing heterogeneous architectures, combining large and small cores on the same die,

in order to provide a range of power / performance capacity is also given. In addition to the

large and small cores, on-die integration in specific areas accelerators for operating special

purpose, such as graphics and media processing has become widespread.

 According to Kyriazis G [4], the essence of the HSA strategy is to create a single

unified programming platform providing a strong foundation for the development of

5

languages, frameworks, and applications that exploit parallelism. More especially, HSA’s

objectives include:

• The use of the processing power offered by GPUs

• Removing the programming dam between CPU/GPU.

• Reduced CPU / GPU latency communication status.

• The opening of the programming platform to a wider range of applications by enabling

existing programming models.

• Create a base for registration of additional processing elements beyond the GPU and CPU.

 An HSA application is run on a various platforms comprising both CPUs and

Intellectual Property (IPs) such GPUs. HSA permits the application to execute at the best

possible performance and power points on a certain platform, without dispensing flexibility.

Simultaneously, it improves programmability, portability and compatibility.

 Figure 3-1 indicates a simple HSA platform. The HSA Accelerated Processing Unit

(APU) includes a GPU with multiple HSA compute units (H-CUs), a multicore CPU, and the

HSA memory management unit (HMMU). The above components are in communication

with coherent and non-coherent system memory.

Figure 3-1 A simple HSA platform [4]

6

3.1 Types of heterogeneous architecture

 For heterogeneous systems factors such as performance, power, flexibility and

programmability should be taken into account. According to Chitlur, N. et al [4], types of

heterogeneous architecture configuration can be described as follows:

Figure 3.1-1 : Heterogeneous Architectures Under Exploration [5]

Core+IP Integration[5]: This type of architecture (illustrated in Figure 1) integrates multiple

homogeneous cores with hardware accelerators (also known as intellectual property (IP)). In

this type of architecture, the IP block is low power but achieves high-performance process

for specific areas such as graphics, security, imaging, etc.

System on Chip CPU GPU Devices

Exynos 5 Dual
1.7 GHz dual-core ARM

Cortex-A15

ARM Mali-

T604 (quad-core)

SamsungChromebookXE303C1

2,
[
Google Nexus 10,

Tegra 3 T30L
1.2 GHz quad core (up to

1.3 GHz in single-core mode)
12 core

Lenovo IdeaPad Yoga 11, Acer

Iconia Tab A700, ZTE Era,

Teggra 4 T114
Up 1.9 GHZ quad core Cortex-

A15
72 cores

Tegra Note 7, Microsoft

Surface 2, HP SlateBook x2,

Toshiba AT10-LE-A

Tegra K1 T132
up to 2.5 GHZ dual core

Denver (64bit)
192 core Google Project Tango tablet,

Texas Instument

 OMAP4460

1.2–1.5 GHZ, dual core Cortex

-A9
PowerVR SGX54

Samsung Galaxy Nexus, Archos

80 Turbo, Huawei Ascend D1

Table 3.1-1 Examples of Core+IP Integration [6]

Asymmetric Core Integration[5]: This type of heterogeneous architecture is proposed by

ARM Holdings and combines a number of general purpose cores. The cores are asymmetric

Interconnect/

Memory

Interconnect/

Memory

Interconnect/

Memory

Small

Core(s)

Core(s) IP(s) Big

Core(s)

Special

Core(s)

Core(s) IP(s)

a. Core+IP Integration b. Asymmetric Core

 Integration

c. Asymmetric and

 Specialization

7

in power consumption and performance. Therefore large and small cores are collaborating

to provide the power efficiency or performance when needed, with the probability of many

same large and small pairs on a chip. The cores could be of different generations, although

they are usually from the same ISA family.

 Each pair (large and small cores) is considered as a virtual core. In real time only one

core is active and running at any time. Hence the large core is used when the system

requirements are high, whereas if the system requirements are low used the small core is

used. When request for virtual core is alternating between low and high, the incoming core

is enabled, the operation state is transferred, the outgoing core is closed down, and

processing continues on the new core. [6]

Figure 3.1-2 CPU migration via the in-kernel switcher [6]

 The most powerful model of small and large cores is heterogeneous multi-processing

(MP). This type allows the simultaneous operation of all the cores regardless of size. So

processes with large computational requirements or high priority are executed by large

cores. On the other hand, processes with less computational requirements or less priority

can be performed by the small cores. [6]

Figure 3.1-3 heterogeneous multi-processing (MP)[6]

8

System on Chip big cores LITTLE cores GPU Devices

HiSilicon K3V3 1.8 GHz dual-

core Cortex-A15

1.2 GHz dual-

core Cortex-A7

Mali-T658

HiSilicon Kirin

920

1.7-2.0 GHz Cortex-

A15

1.3-1.6 GHz quad-core

Cortex-A7

Mali-T628MP4 Huawei

Honor 6

HiSilicon Kirin

930

Cortex-A53 quad

core 2.0 GHz

1,5 Ghz quad core

Cortex-A53

Mali-T628 MP4 Huawei P8

Samsung Exynos

5 Octa

1.6-1.8 GHzquad-

coreCortex-A15

1.2 GHz quad-core

Cortex-A7

PowerVR

SGX544MP3

Exynos 5-

basedSamsu

ng Galaxy S4,

ZTE Grand S

II

Samsung Exynos

5 Octa

1.8-2.0 GHz quad-

core Cortex-A15

1.3 GHz quad-core

Cortex-A7

Mali-T628MP6 Exynos 5-

basedSamsu

ng Galaxy

Note 3,

Samsung

Galaxy Tab

Pro, Galaxy

S5 SM-

G900H

Samsung Exynos

5 Octa

2.1 GHz quad-core

Cortex-A15

1.5 GHz quad-core

Cortex-A7

Mali-T628MP6 Exynos 5-

basedSamsu

ng Galaxy S5-

G900, Odroid

-XU3,

Odroid-XU4

Samsung Exynos

5 Hexa

1.7 GHz dual-core

Cortex-A15

1.3 GHz quad-core

Cortex-A7

Mali-T624 Samsung

Galaxy Note

3 Neo

Samsung Exynos

5 Octa

1.8 GHz quad-core

Cortex-A15

1.3 GHz quad-core

Cortex-A7

Mali-T628MP6 Samsung

Galaxy Alpha

Samsung Exynos

7 Octa

1.9 GHz quad-

core Cortex-A57

1.3 GHz quad-core

Cortex-A53

Mali-T760MP6 Samsung

Galaxy Note

4 (SM-

N910C)

Samsung Exynos

7 Octa (7420

model)

2.1 GHz quad-core

Cortex-A57

1.5 GHz quad-core

Cortex-A53

Mali-T760MP8 Samsung

Galaxy

S6, Samsung

Galaxy S6

Edge

Renesas Mobile

MP6530[

2 GHz dual-core

Cortex-A15

1 GHz dual-core

Cortex-A7

PowerVR

SGX544

Allwinner A80

Octa

Quad-core Cortex-

A15

Quad-core Cortex-A7 PowerVRG6230

9

MediaTekMT659

5

2.2 GHz quad-core

Cortex-A17

1.7 GHz quad-core

Cortex-A7

PowerVR G6200

(600 MHz)

MediaTek

MT6595M

2.0 GHz quad-core

Cortex-A17

1.5 GHz quad-core

Cortex-A7

PowerVR G6200

(450 MHz)

MediaTek

MT6595 Turbo

2.5 GHz quad-core

Cortex-A17

1.7 GHz quad-core

Cortex-A7

PowerVR G6200

(600 MHz)

QualcommSnapd

ragon 808

(MSM8992)

2.0 GHz dual-core

Cortex-A57

Quad-core ARM

Cortex-A53

Adreno 418 LG G4

Qualcomm

Snapdragon 810

(MSM8994)

2.0 GHz quad-core

Cortex-A57

Quad-core ARM

Cortex-A53

Adreno 430 HTC One

M9, LG G

Flex

2, OnePlus 2

Nvidia Tegra4

T40

1.9 GHz quad-

core ARM Cortex-

A15]+

1 low power core Nvidia GeForce

@ 72 core

Nvidia

ShieldTegra

Note 7

Nvidia Tegra4

AP40

1.2-1.8 GHz quad-

core

1 low power core Nvidia GPU

60 cores

Table 3.1-2 Examples of big-LITTLE heterogeneous multi-soc[6]

Asymmetry+Specialization[5]: The third type of configuration combines asymmetric cores,

special purpose cores and hardware accelerators. The main difference lies in the special

purpose cores which are used for special aims (hardware scheduling, management, etc).

3.2 GPU architecture

 A number of the multi-cores architectures have developed to meet the needs for

processing power. GPU architecture is one of the most powerful. GPU architectures have

multiple intensive processors that are specialized for the execution SIMT (Single Instruction

Multiple Thread) operating activities. Until now, the performance of GPU architecture is at

least six times faster than the general purpose CPU architecture [7]. The computer scientists

were particularly interested in exploiting this computing power to quickly solve large

general purpose problems, known as General-Purpose computing on the GPU (GPGPU),

utilizing the potential of parallel programming. A platform called general-purpose

computing on graphics processing units (GPGPU) has emerged to optimize the performance

of GPU. GPGPU programs usually consist of two parts: kernel code and host code. Kernel

code is executed on multiple GPU cores with the configuration. The host code is executed in

10

CPU and includes mainly the procedure for preparing the GPU device, data transfer between

the GPU and the host, as well as the launching of kernels with configuration [8].

 Modern GPUs consist of hundreds of processing units operating at low to medium

frequency, designed for throughput -oriented latency insensitive workload. To hide global

memory latency, GPUs contain small or moderate sized on-chip caches, and make wide use

of hardware multithreading, performing tens of thousands of threads simultaneously

throughout the pool of processing units. The GPU processing units are usually organized in

single-instruction multiple-data (SIMD) clusters controlled by a single instruction decoder,

with access to fast on-chip caches and shared memories. The SIMD clusters execute

instructions in lock-step and branch divergence treated with the implementation of both

paths of the branch and concealing results from inactive processing units as necessary. The

use of SIMD architecture and in-order execution of instructions permits GPUs to contain a

greater number of arithmetic units in the same area as compared to conventional CPUs [9].

 Due to the high computational requirement of graphics GPUs achieved single-

precision floating point arithmetic rates approaching 2 trillions of instructions per second.

GPUs are designed with global memory systems capable of bandwidths approaching 200

GB/sec. GPU memory is organized into multiple banks. Maximum performance is achieved

when the accesses are aligned with the appropriate address boundaries. When a memory

access is not aligned with an appropriate address boundary and in consecutive sequence,

the memory access must be divided into multiple transactions resulting in a significant

decrease of the effective bandwidth and increasing latency [9].

 Even though the GPU are powerful computing modules in their own right, their

management is done by host CPU. The GPUs are usually connected with the host through

PCI-Express bus and in most cases they have their own independent memory. To achieve

data exchange with GPU, the host CPU performs DMA transfers between GPU memory

systems and the host, and in some cases, allow their on-board memory to be mapped in the

host's address space, therefore data is read or written only once during kernel execution [9].

3.2.1 CUDA-OPEN CL

 For programming GPU’s, various programming environments have been developed.

GPUs programming models initially consisted of specialized high-level programming

11

languages, such as HLSL, GLSL, and Cg [10]. In particular, after 2006, where NVIDIA opened

its CUDA (Compute Unified Device Architecture) architecture, it eliminates the need to use

the graphics application programming interfaces (API) for calculating applications, allowing

utilization of GPU computing to more widespread use. Additionally, the Advanced Parallel

Processing (APP) which enables API’s GPUs, working together with the CPU, is combined

with the ability of programmers to develop GPU computing application without mastering

graphics terms. At the same time it enabled the acceleration of the execution of applications

and makes the coding of large programs easier.

 The two modern programming GPU interfaces are CUDA and Open Computing

Language (OpenCL). OpenCL, a portable language for GPU, is an open standard maintained

by the non-profit technology consortium Khronos Group. CUDA is a C language framework.

It is specifically for NVIDIA GPUs with set of language extensions that works only on

NVIDIA’s GPUs, while OpenCL is an open standard that can be used to program central

processing units (CPUs), graphics processing units (GPUs), digital signal processors (DSPs),

field-programmable gate arrays (FPGAs) and other processors.

 CUDA and Open/CL are quite similar to each other; they have similar programming

models, execution models, memory models and platform models but different

programming interfaces. For a programmer, the computing system consists of a host (a

typical CPU), and one or more devices providing parallel processors and a large number of

arithmetic execution units. Furthermore their built-in functions and syntax for various

keywords are similar. Thus it is relatively easy to translate a CUDA program in an Open/CL

program [10, 11].

12

4 Background on scheduling algorithms

Theorem: Dertouzos and Mok say: “No scheduling algorithm is optimal for

scheduling hard real-time aperiodic tasks on two or more processors if all

release times, deadlines, and execution requirements are not known a priori”

as mentioned by Srinivasan A. [12]

4.1 General principles of Scheduling Algorithms

 In CPU scheduling we accept the following assumptions. There are a number of

runnable processes waiting for the CPU. Waiting is performed in an “area” called job pool.

Also all processes compete for resources and independent of each other. The main job of

the scheduler is to distribute the CPU resources fairly and in a way that optimizes certain

performance criteria

 The scheduler constitutes essentially piece of the core of an operating system. It is

responsible for selecting the next process to be executed. Operating systems may have up

to three different schedulers. A short-term scheduler, a medium term scheduler and a long

term scheduler [2]. The long term scheduler is responsible to select a job from the pool and

load it to the main memory. The long term scheduler is responsible to select a job from the

pool and load it into the main memory. These jobs are ready to be executed and inserted to

the ready queue.

Figure 4.1-1 Queuing diagram for scheduling [2]

 From the ready queue, the short term scheduler, known as CPU scheduler, select a

process to be executed and allocates the CPU. The scope of medium term scheduler is to

remove processes from memory and to reduce the degree of multiprogramming results in

Release

Long term

scheduling

Medium term

scheduling

Medium term

scheduling

Short term

scheduling

Time out

Event

occurs

Event wait

Incoming Jobs
CPU

Ready, suspend queue

Ready queue

Blocked queue

Blocked, suspend queue

13

swap system. Swap is performed by a dispatcher. A dispatcher is the unit that gives control

of the CPU to the process.

 Especially in real-time systems, where there are time restrictions in the calculations,

the CPU scheduler performs an important role. In such a system the processes has to be

completed within specified time restrictions. Most real-time systems can be applied in

unpredictable environments that can handle unknown and changing tasks. Therefore a

dynamic task scheduling is necessary. Additional software and system hardware must adapt

to unforeseen compositions.

 There are two main types of real-time systems [13]: Hard Real-Time System, and

Firm or Soft Real-Time System. In Hard Real-Time System specified deadlines must be

complied. Otherwise the result could be disastrous. Soft Real-Time System has higher

tolerance. Such systems where performance is limited, but where are no catastrophic

consequences in case of failure to meet the time constraints, are called soft real time

systems. In real-time systems each task must be completed before its deadline. In soft real-

time system the simple Round Robin algorithm has as a result low throughput and as a

consequence more number of context switches, longer response and waiting times. On the

other hand, if such a system has a large CPU burst, this can lead to starvation problem.

Priority scheduling may be a better choice in real-time systems, but still there is the problem

of starvation, due to a low priority processes will forced to wait.

4.2 Scheduling Criteria

The basic Scheduling Criteria are [13]:

• CPU Utilization - how busy the CPU is.

• Context Switch: It is the process of storing and retrieving the state of a non-

integrated process, so that the process can be executed later, starting from the last

saved context. It usually requires computing power, leads to memory waste and

time, thus increasing the overhead of scheduler.

• Throughput – depends on the number of processes that are completed per unit time

Throughput and context switching and are inversely proportional.

14

• Turnaround Time- How long it takes to execute a process. Turnaround time derived

from the sum of the waiting times to get into memory, waiting time in the ready

queue, the execution time for the CPU and time for the necessary I/O.

• Waiting Time- It is the sum of periods spent in ready queue and it is directly

dependent on the scheduling algorithm.

• Response Time-. How long it takes until the first response after a process request.

 For a scheduling algorithm to be optimally it must achieve maximum CPU utilization,

maximum context switches and throughput, but minimum turnaround time, minimum

waiting time and response time.

4.3 General Scheduling algorithms

 Scheduling algorithms can be divided to static and dynamic algorithms. Static

algorithms have fixed priorities assigned to classes and always prefer one class over

another.

4.3.1 First Come First Served (FCFS)

 An example of a static algorithm is First Come First Served (FCFS) algorithm. FCFS is

the oldest and simplest scheduling algorithm. FCFS can be implemented using a First Come

First Served (FIFO) queue. This implementation is simple with minimal overhead on CPU.

FIFO has only one queue, and the packet that arrived first also gets sent out first. Packets

are sent in the order in which they arrive without hierarchy. This can be done either by a

linked list or a ring buffer, or a hash table indexed by the values of packet arrival time. The

latter method is used in many devices based on specially designed integrated circuits, while

the two former methods are more common in cores operating systems like Linux or BSD.

FIFO is a natural choice where queues do not require any hierarchy.

Main Characteristics:

• There is no prioritization which means that each process may eventually be

completed, therefore, no starvation.

Figure 4.3.1-1 First Come First

15

• The process with the longer burst time can monopolize the CPU, even if the burst

time of another process is very small. Therefore, yield is low. [14]

• The algorithm is seldom chosen since the process takes all resources until

completion.

• Convoy effect [15] is a crucial issue. It occurs when more than one processes share

the same resources. If a long process has reserved resources for a very long time, the

new short processes that are scheduled cannot be served. As a result they can cause

additional delays and significantly increase the system load.

4.3.2 Shortest Job First (SJB) [14]

 The process assigned to the CPU has an execution time at least equal to the burst

time. The scheduler sorts the processes according to the execution time. Processes with a

short time burst are positioned in the starting of the queue and processes with longer burst

time at the end of the queue. This algorithm requires an assessment of the integration time

required for each process [14]. The design of this algorithm aims at maximum efficiency in

most scenarios.

 The main operating mode of the algorithm is as follows. The process having the

shorter burst is allocated in CPU. If two processes have the same burst time, allocated first

process came first according to the FCFS algorithm.

Main Characteristics:

• We must have knowledge of the length of the next CPU request. This is a problem

with the SJF algorithm.

• The algorithm SJB reduced the average waiting time because it first served small

process and then the larger processes.

• Although the average waiting time is reduced, it may adversely affect the processes

with a long burst. In extreme cases, they will never serve the processes with large

burst time, which is a major issue of this algorithm.

• Long running jobs may starve, low supply of short jobs to CPU.

• SJF is optimal in waiting time, by achieving minimum average waiting time.

16

4.3.3 Priority scheduling

 Priority scheduling algorithms [15] is a basic classful scheduling algorithm in which

each process has a value that represents the importance of task in the system. This value

defines the priority. In the process with the highest priority, the resources are available for

its completion. It consists of multiple classes with static priority [16]. It can be implemented

either by each class having its own queue, ordinarily FIFO, either by a single sorted queue in

with the higher priority tasks are at the front and the low priority at the back of the queue.

Figure 4.3.3-1 Priority queuing

 Higher priority queue must be empty before selecting a task from a lower priority.

This is the cause of starvation that the algorithm may suffer.

 There are two techniques of priority scheduling algorithms, dynamic or static priority

[17]. In dynamic algorithms, priority changes during execution, it either decreases or

increases according to specific mechanisms.

Figure 4.3.3-2 shows a job with static priority (blue line), which has priority set to 250, and a

task the priority of which decreases with time (red line).

High priority Low priority
1

2

3

Figure 4.3.3-2 Static and dynamic priority

17

 In static priority, the priority of a process never changes. It is defined at the start and

remains the same until its completion. This kind of algorithms can suffer of job starvation.

Whenever a process is ready for execution but there are no resources available, the process

must wait. If, however, processes with higher priority arrive continuously, then the process

which was waiting will never be served. This case is known as starvation [17].

 One way of avoiding starvation is to determine the number of times that a process

can be overcome by higher priority tasks. Another technique is called aging during which the

priority of a process increases over time. At some point the process will succeed is getting

the necessary resources. The worst is as the process with the highest priority to come up so

it must be executed first. Nevertheless aging technique introduces computing overhead

because of the calculation of new priorities. Another issue is when the appropriate

determination of the time aging will take place. If this time is too short, then low priority

tasks will turn into high priority tasks very quickly, thus loading to FCFS algorithm. On the

other hand if the aging time is too long, maybe the technique will become partially

ineffective.

4.3.4 Multilevel queue scheduling

Figure 4.3.4-1 Multilevel queuing

 The multilevel queue (MLQ) algorithm is based on the use of multiple queues. Each

queue has different weight and the tasks are allocated to queues according to their

importance. There is a queue for each category. Also for each queue a different algorithm

Interactive editing processes

System processes

User processes

Batch processes

Interactive processes

Highest priority

Lowest priority

18

that will find the most important job of the queue can be selected. When resources are

available the most important job is chosen from the queue with the highest priority to. If the

queue is empty then the next queue is examined. If a task is found then resources are

allocated and removed from the queue.

Main Characteristics:[15]

• Jobs cannot change queue. Therefore the right choice of queue is important for best

results.

• Need to determine the number of queues.

• Determine the scheduling algorithm of each queue.

• The way by which it is decided which task will be placed in which queue.

4.3.5 Multilevel feedback queue scheduling

 Multilevel feedback queue (MLFQ) [15] scheduling algorithms is an extension of MLQ

algorithms. The main difference lies in the fact that the job can move from one queue to

another queue. After a period of time quanta, the priority of process decreases and the

priority queue changes. Also if a process is waiting in a queue too long this may increase the

priority, and eventually it is transferred to another line with an increased priority.

Nevertheless the main difficulty in applying the algorithm is MLFQ based on its complexity

and because of usually introduced higher overhead.

Figure 4.3.5-1 Multilevel feedback queuing

 The problem of starvation is solved easily since it can change a job queue. Using

parameters such as history and runtime information jobs can be distinguished at runtime

according to their behavior. Problems with MLFQ algorithms can arise if a job changes

behavior over time and the scheduler does not realize this change. In these cases the system

quantum=8

quantum=16

FCFS

19

performance typically declines. Generally MLFQ algorithms achieve better results than other

scheduling algorithms. However, they introduce overhead computational load. The

implementation of Linux scheduler is based on MLFQ algorithm.

Main Characteristics

• the number of queues

• scheduling algorithms for each queue

• method used to determine when to upgrade a process

• method used to determine when to demote a process

4.3.6 Round Robin

 The algorithm Round Robin (RR) [2, 14] assigns to each process a small unit of time,

the time quantum. The schedule goes around this queue, allocating the CPU to each process

for a specified time quantum. The new procedures are added to the end of the tail.

 The Round Robin algorithm works as follows. At first, selected time is assigned to

each process. Then the time is allocated to each process according to the FCFS algorithm. If

the burst time is less than the quantum, then the carrying out of the process must be

terminated. Otherwise the process is executed for as much time as quanta, and returns to

the end of the queue waiting for the next cycle.

Figure 4.3.6-1 Context switches in Round Robin

Main Characteristics:

• The basic RR has large waiting time and large response time

process time = 10

0 10

6 0 10

0 1 2 3 4 5 6 7 8 9 10

quantum context switches

 12 0

 6 1

 1 9

20

• Therefore it provides less throughput.

• Can lead to reduced effectiveness of CPU, because of many context switches too

short time quanta is selected.

• On the other hand, if the time quantum is too large, then the algorithm

approximates the FCFS algorithm.

• Generally it achieves, higher average turnaround time than SJF, but better response.

4.3.7 Weighted Round Robin

 Weighted Round Robin (WRR) is a scheduling algorithm with the main use in ATM

networks using fixed size packets. It was first proposed by M. Katevenis, S. Sidiropoulos and

C. Courcoubetis in 1991[18]. The basic idea is that a weight is assigned in each flow. In every

cycle of service, the number of packets served is proportional to the weight defined for each

flow. The job will receive wi consecutive time slices in each round, and the duration of a

round is the sum of all wi.

Main Characteristics

• Equivalent to regular round robin if all weights are equal to 1.

• Simple to implement, since it doesn’t require a sorted priority queue.

• Offers throughput guarantees - Each job makes a certain amount of progress each

round.

• By giving each job a fixed fraction of the processor time, a round robin scheduler

may delay the completion of every job.

4.3.8 Deficit Round Robin

 Deficit Round Robin (DRR) is a queue scheduling algorithm based on round robin that

is firstly applied to routing packets. It was proposed by M. Shreedhar and G. Varghese in

1995 as a fair and efficient, with O(1) complexity algorithm[19]. Patrick McHardy

implemented DRR for Linux kernel

 The main idea of DRR algorithm is as follow. There are queues of packets with

specific flow for each queue. A quantum of service has been assigned to each queue and

round robin technique is used to service the queues. The algorithm checks all the full tails in

a sequence. If a non empty queue is found its deficit counter is incremented by its quantum

value. The value of the deficit counter is a maximal amount of bytes that can be send at

21

each cycle. If the size of first packet of the queue is less than the deficit counter value, the

packet can be sent and then the value of the deficit counter decreases by the packet size.

Then, the size of the next packet is compared to the deficit counter value, etc. If the size of

the first packet of the queue is greater than the deficit counter value, or the queue is empty,

the scheduler will skip to the next queue; and the value of the deficit counter increases by

the quantum value. If the queue is empty the deficit counter is set to zero. If a deficit

counter becomes less or equal to zero then it increases by the quantum value.

Main Characteristics:

• The network administrator chooses weights of queues.

• Regardless of the size of each packet, it provides a minimum rate to each flow.

• If the quantum Qi is larger than the maximum size of packet of each flow, the

complexity of DRR is O(1).

4.4 Heterogeneous scheduled techniques

 By default, GPU kernels executed serially, a kernel at a time. But the latest CUDA and

Nvidia GPU architectures can perform multiple different kernels if resources are available.

However the GPU kernels executes sequentially, if resources are insufficient. Sequential

execution kernel could provide enough performance for most of the general-purpose

computing. Nevertheless, in real-time systems, sequential execution can cause problems,

because there is the potential for priority inversion. To resolve this problem numerous

scheduled techniques have been proposed.

4.5 Heterogeneous Scheduling Categories

 The main purpose of each scheduling algorithm is to assign a task to a suitable

processor so that total execution time is minimized. However, to find a schedule for a

heterogeneous parallel architecture must take into consideration a number of factors such

as: different processing elements, processes may not be operable by all processors; the run

time of a process may be different depending on processing elements and the

communication time may vary [20].

 Task scheduling on a heterogeneous system can be classified into several categories.

22

4.5.1 Static and dynamic Schedulers

One category is static and another one dynamic.

• In static, task-to-core mapping is done only once at the beginning of the application

or at compile time offline. This model can be represented by dependency graph in

which tasks in the critical path determine the total duration of application. This

enables the application to accelerate by executing critical tasks in fast cores. Hence

the schedule remains the same throughout execution of the application. Moreover

all information about the tasks, such as the cost of execution and communication

for each task and relationship with other tasks is known a priori [21].

 Static scheduling algorithms are classified into two categories, Heuristic-

based and Guided Random Search-based algorithms. Heuristic-based algorithms

often provide good solutions with polynomial time complexity. Guided algorithms

Random Search-based also give approximate solutions [21].

• In dynamic scheduling, progress monitoring of works and migration are used to

ensure a certain level of performance applications. Information about the tasks, as

the cost of execution and communication cost for every task and the relationship

with other tasks is not known beforehand. So decisions are taken at runtime [21].

The dynamic scheduling enables automatic synchronization and scheduling by the

runtime system such us OmpSs [22]. This model maintains a directed acyclic graph

(DAG) with the current state of the process, and when fulfilling the requirements of

a process it becomes ready to be scheduled to an available core. Although the

dynamic programming is likely to achieve better application performance than the

static scheduling, yet it can be better in small multi -core systems and not in large

multi-core systems [20].

4.5.2 Clustering, Listing, Duplication-based and Guided-random schedulers

 Moreover schedulers for heterogeneous systems can be divided into four types of

schedulers: clustering, listing, duplication-based, and guided-random schedulers [24, 25].

Clustering, listing and duplication-based algorithms belong to Heuristic-based class

algorithm [21].

23

• Clustering schedulers comprise clusters and each cluster must be running on the

same processor. Clustering heuristics are mainly proposed for homogeneous

systems and they seem difficult to use in for heterogeneous systems. At the stage

of clustering, the algorithm assumes that there are an infinite number of available

processors. If the number of clusters is larger than the number of available cores,

then it is necessary to merge the clusters so as to be as many as the available

cores. Such type is the Levelized Min Time algorithm. With this method are

organized clusters of tasks that can be performed in parallel depending on their

level. Assuming a graph, sibling nodes in a graph have the same level. The

priorities of tasks defined on a cluster according to the time of execution. Tasks

with the largest execution time have the highest priority. The assignment task to

the processor is in descending order of priority [23].

• Listing schedulers have two phases. In the first phase, every task is given priority

based on the policy defined in each algorithm. In the second phase, according to

their priorities, tasks are assigned to processors. These kinds produce the most

efficient schedules, without compromising the makespan and with a quadratic

complexity in relation to the number of tasks [21, 23].

• The aim of duplication-based schedulers is the limitation of communication

between processes. This is achieved by duplication of tasks. If a task has a lot of

successors, it is doubled and running on multiple cores before their successors, so

all successor tasks get the results from their predecessors with lower

communication costs. This type of algorithm has two disadvantages, a higher

complexity (cubic, in relation to the number of tasks) and the duplication of the

execution of tasks. Therefore they require more processor power [21, 23].

• In Guided-random schedulers, the scheduling influenced by policies applied to

other sciences. For example, they are based on genetic algorithms or chemical

reaction algorithms [23]. Their results can be improved if more repetitions are

performed, which therefore makes it more expensive than the based Heuristic

approach [21].

24

4.6 Basic Heterogeneous Scheduling Algorithms

4.6.1 HEFT

 Topcuoglu et al [25] presents Heterogeneous Earliest-Finish-Time (HEFT) algorithm.

It is one of the best, more acceptable and well documented list-based heuristic scheduling

algorithm. HEFT is among the best schedule in compared between 20 scheduling heuristics

algorithms as mention Canon et al [26]. At terms of complexity has a O(n
2
p) complexity,

where n is the number of tasks and p the processors. The HEFT algorithm consists of two

stages. First it assigns a priority to each task and all the tasks sorted in decreasing order. The

tasks are ranked upwards and downwards to configure scheduling priorities. The maximum

sum of computation and communication cost between the task and an exit node in the

graph from that task is the upward rank of a task. The maximum sum of computation and

communication cost between an entry node in the graph into that task is the downward

rank. Afterwards, the task with the highest priority is assigned to the processor, which

completes the execution of the task in the shortest possible time. Thus, the total execution

time is minimized. There have been proposed various amendments of the above algorithm.

HEFT ALGORITMH
1: Compute ranku for all nodes
2: ReadyTask � {Entry tasks}
3: While ReadyTask is not empty
4: Select the task n with highest priority
5: Assign the task n to the processor p that minimizes the
 earliest finish time (EFT) value of n
6: Update earliest start time (EST) values and ReadyTask
7: End while

4.6.2 CPOP

 Critical Path on a Processor (CPOP) heuristic algorithm is proposed by Topcuoglu et

al [25]. It also sorted the tasks in decreasing order. The tasks are ordered by the node

priority arising to the addition of their upward rank and downward order. The task with the

maximum sum belongs to the critical path. On each step these tasks are assigned to the

critical-path-processor (CPP), which is usually the fastest processor that minimizes the

length of the critical path, otherwise it is running on the processor that minimizes the EFT

[23, 27]. The complexity is also as the HEFT, O(n
2
p).

25

CΡΟΡ ALGORITHM
1: Compute ranku and rankd for all nodes
2: ReadyTask �{Entry tasks}
3: While ReadyTask is not empty
4: Select the task n with highest priority
5: If n is οιιt the critical processor
6: Assign n to the CΡΡ
7: Else
8: Assign the task n to the processor Ρ that
 minimizes the EFT value of n
9: Update EST values and ReadyTask
10: End while

Both algorithms operate statically and require prior knowledge of computation and

communication costs of each task for each processor type.

26

5. Implementation

 The objective of this work is the implementation of a scheduling algorithm for

dispatching jobs to accelerator processors in a heterogeneous system.

5.1 Basic Idea

 The basic idea of the algorithm is as follows. In the context of a multiprogrammed

environment we assume we have N applications, a set NQ of queues with a fixed max weight

that the system assigns to each queue. The weight of each queue represents the maximum

time quantum allocated to this queue for execution, or the normalized maximum time

quantum. Each application enqueues jobs in queues. The jobs are dispatched to a hardware

accelerator either single or multi-threaded (e.g. GPU). Initially, we assume a single

accelerator for servicing the works. The queue contains packets with the job attributes, such

as pointers to the kernel code and data, estimated execution time, type, etc.

 Special mention should be made to packet weight (Weight(m)) and to the field order.

The Weight(m) of each packet is different and independent from the weights of the other

packets. The objective of order is to discern the enqueue order of a packet. Packets

enqueued during the same cycle have the same order. If a packet has order value greater or

equal than the order value of current cycle then the packet is ignored. This way the

scheduler serves only the packets that have been enqueued when the cycle started. Packets

enqueuing after the cycle is started will serve in the next cycle.

 The centralized scheduler when deals with a queue with a higher weight

(weight_queue) compared to a queue with a lower weight, must serve a number of packets

in proportion to the ratio of their weights. Essentially, the algorithm scheduling policy works

in Round-Robin fashion and provides weighted fairness for variable-length packets (i.e.,

execution time) maintained in multiple queues.

5.2 Algorithm Description

 Each queue is designed as a ring buffer, with two pointers Front and Rear. In each

queue fixed-size packets can be enqueued that contain the job weight (Weight) by

amending the Rear pointer. A dequeue operation causes the Front pointer to decrease. If

the Front pointer is equal to Rear then the queue is empty. If Front pointer plus one is equal

to Rear pointer the queue is full. The above implementation is necessary due to the

27

limitation of physical memory. In our simulation model the queues are implemented as

classical queues with head and tail pointers. In both cases the packets inside a queue follow

a FIFO ordering.

Figure 5.2-1 Schematic algorithm description

 Every queue i (1<=i<=NQ) has a maximum weight of dequeued packets

(Weight_Queue(i).The Weight_Queue(i) is initially defined before the scheduler starts. Since,

the sum of all weights (Weight_Queue(i)) determines the total weight (TotalWeight).

TotalWeight= Weight_Queue(1) + …+ Weight_Queue(Q) (1)

 Additionally there is a variable current_order which keeps the current order, which

in turn is the same as the number of cycle. Another variable, the order(packet m) , keeps the

order when the packet is enqueued.

 Each time it is possible to export packets as long as the following conditions are met

with: a) the sum of total popped weight packets from all queues should not be exceeded by

a maximum fixed threshold (TotalWeight) that was initially determined, b) the sum of the

weights of the packets of each queue must be lower or equal than the weight of that queue

(Weight_Queue(i)), and c) the order(packet m) must be less than current_order.

Accelerator

Round Robin Packet from Queuei

Front

Rear

Front

Rear

FIFO

Queue 1

weight_queue1

FIFO

Queue N

weight_queueNQ

weight_queue1 >.> weight_queueNQ

TotalWeigth= weight_queue1 +…+ weight_queueNQ

28

 Also there is a variable or each queue i (1<=i<=NQ) that keeps the current total

weight (CurrentTotalWeight(i)) of dequeued packets. CurrentTotalWeight(i) is initially set to

zero. If a packet deqeue from a queue i, then the CurrentTotalWeight(i) is increased by the

weight of packet.

CurrentTotalWeight(i) = CurrentTotalWeight(i) + Weight(m) (2)

 Before being dequeued a packet, the sum of the current total weight of dequeued

packets of the queue i plus the weight of the packet to be exported is calculated.

CurrentTotalWeight(i)+ Weight(m) (3)

 If equation (3) is less than or equal to Weight_Queue(i), the packet can be dequeued,

while increasing the current total weight of dequeued packets by the weight of dequeued

packet.

CurrentTotalWeight(i) = CurrentTotalWeight(i) + Weight(m) (4)

CurrentTotalWeight(i) + Weight (5)

 If the equation (5) is more than Weight_Queue(i) of queue i, then examine the next

queue.

 If the queue is empty then set the CurrentTotalWeight(i) equals Weight_Queue(i)

(equation 6)

CurrentTotalWeight(i) = Weight_Queue(i) (6)

 Finally there is a global variable, CurrentTotalWeight, which increases by the

CurrentTotalWeight(i) (equation 7)

CurrentTotalWeight= CurrentTotalWeight+ CurrentTotalWeight(i) (7)

29

 The necessary and sufficient conditions to dequeue one job are for the

CurrentTotalWeight to be less than the TotalWeight and for the CurrentTotalWeight(i) to be

less than the Weight_Queue(i). Furthermore the order(packet m) must be less than the current

order. The queue will become ineligible to serve a)if the CurrentTotalWeight is greater or

equal to the TotalWeight or b) if the CurrentTotalWeight(i) is greater or equal to the

Weight_Queue(i) or c) the order(packet m) is greater than or equal to current order.

 If the CurrentTotalWeight is greater or equal to the TotalWeight, it indicates that all

packets permitted to be dequeued have indeed been dequeued. Also if the

CurrentTotalWeight(i) is greater or equal to the Weight_Queue(i) this denotes that all packets

permitted to be dequeued from queue i have been actually dequeued.

 In each cycle packets with maximum total weight equal to TotalWeight can be

dequeued. If the CurrentTotalWeight value is the highest possible and simultaneously less

than or equal to TotalWeight then a cycle is completed. After this cycle, the procedure starts

over again by setting the CurrentTotalWeight and CurrentTotalWeight(i) for each queue i to

zero. Thus, a new cycle begins for the packets that arrived during the previous cycle; the

total system weight is still equal to TotalWeight. In this new cycle the scheduler examines

the next eligible queue starting from the last queue plus one that was served in the previous

cycle. This is done to provide fairness, since we avoid the bottom queues from starvation.

Otherwise, with the start of every new cycle the first queue will be examined, consequently

delaying the servicing of lower queues.

Algorithm WSOVL

Input: A set of NQ Queues, Weight_Queue(i), TotalWeight,

 parameter queue number i to start from this queue.

Output: return a eligible queue number i,

 or control value (-1 or -2)

1:For each cycle do

2: If Queues are empty then return (-2);

3: While (i< NQ) and (packet not found) do

4: If ((queue i is empty) or (order(packet m) >=current order)) and

 (CurrentTotalWeight(i)< Weight_Queue(i) then

5: update CurrentTotalWeigth, CurrentTotalWeight(i);

6: examine the next queue;

7: else if (queue i is not empty) and (CurrentTotalWeight(i) +

Control Vlaue:

• -1: call again Algorithm…

while not complete the

requisite total_weight

• -2: empty queues or full

weight

30

 Weight(packet)<=Weight_Queue(I))

 and (CurrentTotalWeight < TotalWeight) and (order(packet m)<current order)

 then

8: found a packet in queue i;

9: update CurrentTotalWeight(i); CurrentTotalWeight,

10: else if (queue i is not empty) and (CurrentTotalWeight(i) +

 Weight(packet)>Weight_Queue(I))

 and (CurrentTotalWeight < TotalWeight) and (order(packet m) <current order)

 then

11: update CurrentTotalWeight, CurrentTotalWeight(i);

12: examine the next queue;

13: else if (CurrentTotalWeight = TotalWeight) then

14: return(-2);

15: else

16: examine the next queue;

17: endif

18: End while.

19: If found a packet then

20: If (i<NQ) then

21: will examine the next queue (q=i+1) on next cycle;

22: else examine the queue 1 (q=1) on next cycle;

23: endif

24: return(i);

25: endif

26: if (i== NQ) then return (-1);

27: End of Cycle;

31

6 Measurements

 In order to study the behavior of the algorithm the following scenarios are

implemented. These scenarios are indicative, with the purpose to demonstrate the behavior

of algorithm. The algorithm can handle any number of queues but in the proof-concept

examples, 8 queues have been assumed.

6.1 Scenario 1. As many packets as can be served in a cycle, average packet

weight 100, minimum queue weight 300, maximum queue weight 1000.

 The scenario is based on the following assumptions. Suppose we have 8 queues.

Queue 0 (Q0) has the largest weight and queue 7 (Q7) the minimum weight. The weights of

the queues have been assigned as follows: Q0:1000, Q1:900, Q2:800, Q3:700, Q4:600,

Q5:500, Q6:400 and Q7:300. This means that Q0 can serve packets with total weight at most

1000, Q1 at most 900, and so on. The maximum total weight that can service in a cycle is the

sum of the weights of all queues, which is 5200.

 The weights of the packets that are enqeued into queues are provided by the

Poisson distribution. The weight represents the execute time quanta of each packet. In our

example the average weights of packets are 100. In each queue are enqeued as many

packets as can be served in a cycle. For example in Q0, packets with maximum total weight

equal to 1000 are enqeued, in Q1 packets with maximum total weight equal to 900 are

enqeued, and so on. So Q0 has weight 1000 and can accept maximum 10 jobs of 100 each.

The packets are enqeued just before the new cycle starts. This means that all queues are

empty when the new packets are inserted. Moreover, we assume in all scenarios an

additional delay of 2 time quanta of each job, because of reading, writing and transfer delay.

 Table 6.1-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10026 total serviced packets.

Queue Mean Latency Mean Weight Max Latency Number of Jobs

0 3259.02238046796 100.021363173957 5032 1966

1 2645.64325842697 99.5921348314607 4926 1780

2 2485.47351627313 99.6119974473516 4723 1567

3 2293.92398523985 99.9372693726937 4437 1355

4 2074.53403141361 99.8368237347295 4095 1146

32

5 1815.50858369099 99.7907725321888 3607 932

6 1570.29769959405 99.2936400541272 3041 739

7 1255.66279069767 99.1027131782946 2353 516

Table 6.1-1 Results for as many packets as can be served in a cycle, average packet weight 100,

 min queue weight 300max queue weight 1000.

Figure 6.1-1 Latency for as many packets as can be served in a cycle average packet weight 100,

min queue weight 300, max queue weight 1000.

 From the above table we can understand that in such case, the queue with minimum

weight (Q7. 300) enjoys the minimum latency. But Q7 serviced the fewest jobs. So if we

desired to serve a small number of jobs with the minimum latency we would choose Q7.

 If we have many jobs to service, then choose Q0. QO services the maximum jobs but

simultaneously it has the maximum Mean Latency. Otherwise if we choose Q7 then the jobs

will have to wait for more service cycles to complete.

 In total we have 208 service cycles. In theses cycles we submit almost 9.45 jobs per

service cycle to Q0, and 2.48 jobs per cycle to Q7 and 10026 total serviced jobs are

submitted

Number of cycles

L

a

t

e

n

c

y

33

6.2 Scenario 2. As many packets as can be served in a cycle, average packet

weight 50, minimum queue weight 300, maximum queue weight 1000.

 The weight of each queue, the total weight, the mode and the time of enqueing

packets are the same as previous. The only difference is the weight of each packet. The

weight is given by Poisson distribution; with distributed value 50, rather 100 in the previous

scenario. So Q0 has weight 1000 and can accept maximum 20 jobs of 50 each, rather 10 jobs

in scenario1, and so on.

 Table 6.2-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10001 total serviced packets.

Queue Mean Latency Mean Weight Max Latency Number of Jobs

0 3397.7465648855 49.5648854961832 5263 1965

1 2954.39132915003 49.9566457501426 5131 1753

2 2750.22422680412 50.1024484536082 4949 1552

3 2523.56995581738 49.8063328424153 4736 1358

4 2223.09745390694 50.233538191396 4341 1139

5 1950.68376963351 49.9151832460733 3900 955

6 1628.28853754941 49.3333333333333 3404 759

7 1248.73211009174 50.0605504587156 2510 545

Table 6.2-1 Results for as many packets as can be served in a cycle, average packet weight 50, min queue weight 300,

max queue weight 1000.

 As in scenario 1, the queue with minimum weight (Q7. 300) enjoys the minimum

latency. But Q7 serviced the fewest jobs. In addition QO services the maximum jobs but

simultaneously it has the maximum Mean Latency.

34

Figure 6.2-1 Latency for as many packets as can be served in a cycle average

packet weight 50, min queue weight 300, max queue weight 1000.

 The main anticipated difference between two scenarios is the service cycles. In

scenario 1, 208 cycles are needed to service 10026 jobs. In scenario 2, 100 cycles are needed

to service 10001 jobs. Hence, in about 200 cycles (as scenario 1) approximately 20000 jobs

will be served, since we have smaller jobs.

6.3 Scenario 3. As many packets as can be served in a cycle, average packet

weight 100, minimum queue weight 650, maximum queue weight 1000.

 The weights of the queues have been assigned as follows: Q0:1000, Q1:950, Q2:900,

Q3:850, Q4:800, Q5:750, Q6:700 and Q7:650. This means that Q0 can serve packets with

total weight at most 1000, Q1 at most 950, and so on. The maximum total weight that can

be serviced in a cycle is the sum of the weights of all queues, which is 6600. This implies that

more jobs can served in a cycle, compared with the previous scenarios where the total

weight was 5200.

 The weights of the packets that are enqeued into queues are provided by the

Poisson distribution. The weight represents the execute time quanta of each packet. In our

example the average weights of packets are 100. In each queue are enqeued as many

packets as can be served in a cycle. For example in Q0, packets with maximum total weight

equal to 1000 are enqeued, in Q1 packets with maximum total weight equal to 950 are

enqeued, and so on. So Q0 has weight 1000 and can accept maximum 10 jobs of 100 each.

The packets are enqeued just before the new cycle starts. This means that all queues are

Number of cycles

L

a

t

e

n

c

y

35

empty when the new packets are inserted. Moreover, we assume an additional delay of 2

times quanta of each job, because of reading, writing and transfer delay.

 Table 6.3-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10031 total serviced packets.

Queue Mean Latency Mean Weight Max Latency Number of Jobs

0 3908.52272727273 99.8837662337662 6423 1540

1 3228.9780971937 99.8220396988364 6359 1461

2 3125.08127721335 99.7902757619739 6266 1378

3 3043.6499614495 99.7918272937548 6180 1297

4 2917.42737896494 100.510016694491 5981 1198

5 2863.1073943662 100.348591549296 5971 1136

6 2762.92768791627 99.7887725975262 5499 1051

7 2650.92680412371 99.9536082474227 5487 970

Table 6.3-1 Results for as many packets as can be served in a cycle, average packet weight 100, min queue

weight 650, max queue weight 1000.

Figure 6.3-1 Latency for as many packets as can be served in a cycle average

packet weight 100, min queue weight 650 max queue weight 1000.

 For 10031 packets to be served were needed 162 cycles while in scenario 1 208

cycles were needed to serve 10026 jobs. The above result was expected since in each cycle

more jobs are served. Identical with scenario 1, the queue with minimum weight (Q7. 650)

enjoys the minimum latency. But Q7 serviced the fewest jobs. So if we desired to serve a

small number of jobs with the minimum latency we would choose Q7. QO services the

Number of cycles

L

a

t

e

n

c

y

36

maximum jobs but simultaneously it has the maximum Mean Latency. Otherwise if we

choose Q7 then the jobs will have to wait for more service cycles to complete. Furthermore

all queues served more jobs compared with scenario 1. Therefore by increasing the weight

of a queue the number of the packets that can be served is increased.

6.4 Scenario 4. As many packets as can be served in a cycle, average packet

weight 50, minimum queue weight 650, maximum queue weight 1000.

 The weight of each queue, the total weight, the mode and the time of enqueing

packets are the same as scenario 3. The only difference is the weight of each packet. The

weight is given by Poisson distribution; with distributed value 50, rather 100 in previous

scenario. So Q0 has weight 1000 and can accept maximum 20 jobs of 50 each, rather 10 jobs

in scenario1, and so on.

 Table 6.4-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10123 total serviced packets.

Queue Mean Latency Mean Weight Max Latency Number of Jobs

0 3970.19078520441 49.9539260220636 6700 1541

1 3564.08567511995 50.0575736806032 6672 1459

2 3422.30930064888 49.8500360490267 6633 1387

3 3315.99696279423 49.5512528473804 6515 1317

4 3152.15905383361 49.9363784665579 6353 1226

5 2969.58657243816 50.3533568904594 6056 1132

6 2864.81605975724 49.4743230625584 5970 1071

7 2704.33232323232 49.8464646464646 5555 990

Table 6.4-1 Results for as many packets as can be served in a cycle, average packet weight 50, min queue

weight 650, max queue weight 1000.

.

37

Figure 6.4-1 Latency for as many packets as can be served in a cycle average

packet weight 50, min queue weight 650, max queue weight 1000.

 As previous, the queue with minimum weight (Q7. 650) enjoys the minimum latency.

But Q7 serviced the fewest jobs. In addition QO services the maximum jobs but

simultaneously it has the maximum Mean Latency.

 The main anticipated difference between scenario 3 and scenario 4 is the service

cycles. In scenario 3, 162 cycles are needed to service 10031 jobs. In scenario 4, 79 cycles

are needed to service 10123 jobs. Hence, in about 160 cycles (as scenario 3) will be served

approximately 20200 jobs, since we have smaller jobs.

6.5 Scenario 5. Average packet weight 100, weight 300 of each queue.

 We have 8 queues. Queue 0 (Q0) has the largest weight and queue 7 (Q7) the

minimum weight. The weights of the queues have been assigned as follows: Q0:1000,

Q1:900, Q2:800, Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300. This means that Q0 can serve

packets with total weight at most 1000, Q1 at most 900, and so on. The maximum total

weight that can service in a cycle is the sum of the weights of all queues, which is 5200.

 The weights of the packets that are enqeued into queues are provided by the

Poisson distribution. The weight represents the execute time quanta of each packet. In our

example the average weights of packets are 100. In each queue are enqeued packets with

total weight equal to the minimum weight of the queues. The minimum weight is the weight

of queue 7, which is 300. So in Q0, packets with maximum total weight equal to 300 are

enqeued, in Q1 packets with maximum total weight equal to 300 are enqeued, and so on,

although Q0 weight is 1000. So in a cycle 10 packets of 100 can be served. Nevertheless

Number of cycles

L

a

t

e

n

c

y

38

maximum 3 jobs of 100 each are inserted. The same occurs with other queues. The packets

are enqeued just before the new cycle starts. This means that all queues are empty when

the new packets are inserted. Moreover, we assume an additional delay of 2 time quanta of

each job, because of reading, writing and transfer delay.

 Table 6.5-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 1000 total serviced jobs.

Queue Mean Latency Mean Weight Max Latency Number of Jobs

0 956.067226890756 99.9747899159664 2052 119

1 1087.35658914729 98.2325581395349 2160 129

2 1041.11904761905 98.4761904761905 2138 126

3 1043.69230769231 98.7846153846154 2177 130

4 939.895161290323 99.2661290322581 2173 124

5 935.869918699187 100.032520325203 2063 123

6 940.301587301587 97.8174603174603 2052 126

7 973.09756097561 98.4065040650407 2139 123

Table 6.5-1 Results for packets with weight 300 of each queue, average packet weight 100.

Figure 6.5-1 Latency for packets with weight 300 of each queue, average packet weight 100.

 The number of enqueuing packets in each queue is approximately the same because

there is no difference in the total weight of enqueuing packets in queues. The Mean

Number of cycles

L

a

t

e

n

c

y

39

Latency, Max Latency, and Number of serviced Jobs are about the same. The Mean Latency

range from 935,86 to 1087,35, Max Latency range from 2052 to 2160 and the Number of

serviced Jobs range from 123 to 130. Moreover 49 cycles are needed to serve 1000 jobs.

Accordingly 490 cycles are needed to serve 10000 jobs. Additionally the most cycles needed

than all previous scenarios. Briefly in such circumstance the algorithm behaves as Round

Robin algorithm.

6.6 Scenario 6. Average packet weight 100, weight 1000 of each queue.

We have 8 queues. Queue 0 (Q0) has the largest weight and queue 7 (Q7) the minimum

weight. The weights of the queues have been assigned as follows: Q0:1000, Q1:900, Q2:800,

Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300. This means that Q0 can serve packets with

total weight at most 1000, Q1 at most 900, and so on. The maximum total weight that can

service in a cycle is the sum of the weights of all queues, which is 5200.

 The weights of the packets that are enqeued into queues are provided by the

Poisson distribution. The weight represents the execute time quanta of each packet. In our

example the average weights of packets are 100. In each queue are enqeued packets with

total weight equal to the maximum weight of the queues. The maximum weight is the

weight of queue 0, which is 1000. So in Q0, packets with maximum total weight equal to

1000 are enqeued, in Q1 packets with maximum total weight equal to 1000 are enqeued,

and so on, although Q7 weight is 300. So in a cycle 3 packets of 100 can be served.

Nevertheless about 10 jobs of 100 each are inserted. The same occurs with queues 1-6. The

packets are enqeued just before the new cycle starts. This means that all queues are empty

when the new packets are inserted. Moreover, we assume an additional delay of 2 time

quanta of each job, because of reading, writing and transfer delay.

 Table 6.6-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 1007 total serviced jobs.

Queue Mean Latency Mean Weight Max Latency Number of Jobs

0 3230.16243654822 100.345177664975 4946 197

1 8039.74725274725 99.4340659340659 14665 182

2 9138.80503144654 99.4276729559748 17215 159

3 9396.40875912409 100.401459854015 17309 137

40

4 10653.4086956522 100.191304347826 20613 115

5 12724.8888888889 102.088888888889 25448 90

6 12083.8 98.4933333333333 25550 75

7 18095.3076923077 99.2115384615385 30650 52

Table 6.6-1 Results for packets with weight 1000 of each queue, average packet weight 100.

Figure 6.6-1 Latency for packets with weight 1000 of each queue, average packet weight 100.

 QO has the minimum Mean Latency 3230.16 and minimum Max Latency 4946. The

Mean Latency rate and Max Latency are dramatically increasing in other queues. Hence Q7

has the maximum Mean Latency 18095.30 and maximum Max Latency 30650. This is a

consequence of the number of packets enqueuing in a cycle, as in a cycle enqueuing more

packets than can be served in a cycle. So packets in Q1-Q7 must wait for the next cycles to

serve. Therefore a bottleneck is happening in these queues. This effect was mostly

pronounced in lightweight queues with Q7 that have the major problem. Also Q0 served

more jobs (197) than other queues. Q7 served fewer jobs (52) than other queues. Also 21

cycles are needed to serve 1000 jobs. Accordingly 210 cycles are needed to serve 10000

jobs.

Number of cycles

L

a

t

e

n

c

y

41

6.7 Scenario 7. Average packet weight 50 for Q0-Q3, average packet weight

100 for Q4-Q7, minimum queue weight 300, maximum queue weight 1000.

 We have 8 queues as above. The weights of the queues have been assigned as

follows: Q0:1000, Q1:900, Q2:800, Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300. The

weights of the packets that are enqeued into queues are provided by the Poisson

distribution. The queues 0, 1, 2 and 3 the average weights of packets are 50. The queues 4,

5, 6 and 7 the average weights of packets are 100. So in Q0, above 20 packets with

maximum total weight equal to 1000 are enqeued, in Q1 above 18 packets with maximum

total weight equal to 900 are enqeued, and so on for queue 2 and 3. Q4 has weight 600, so

no more than 6 packets with maximum total weight equal to 600 are enqeued, in Q5 above

5 packets with maximum total weight equal to 500 are enqeued, and so on for queue Q4

and Q7. In all cases the packets are enqeued just before the new cycle starts. This means

that all queues are empty when the new packets are inserted. Moreover, we assume an

additional delay of 2 time quanta of each job, because reading, writing and transfer delay.

 Table 6.7-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10037 total serviced jobs, in 101 cycles.

Queue Mean Latency Mean Weight Max Latency Number of Jobs

0 4392.73860182371 49.9620060790274 6626 1974

1 4026.76063829787 49.738829787234 6539 1880

2 3911.38951521984 49.7519729425028 6498 1774

3 3818.30796884362 49.8933493109647 6352 1669

4 2156.60342555995 99.6758893280632 4421 759

5 2107.1946403385 100.056417489422 4412 709

6 2075.47734138973 99.404833836858 4119 662

7 2011.12786885246 99.6590163934426 4135 610

Table 6.7-1 Results for packets with minimum queue weight 300, maximum queue weight 1000,

 average packet weight 50 for Q0-Q3, average packet weight 100 for Q4-Q7.

42

Figure 6.7-1 Latency for packets with minimum queue weight 300, maximum queue weight 1000,

average packet weight 50 for Q0-Q3, average packet weight 100 for Q4-Q7.

 The Mean Latency between Q0, Q1, Q2 and Q3 ranges between 3818,30 and

4392,73. Also Max Latency ranges between 6352 and 6626. Q0 has the maximum Mean

Latency and Max Latency. Q3 has the minimum Mean Latency and minimum Max Latency.

But Q0 has services most jobs, 1974, rather Q3 which has serviced 1669 jobs, of about 50

each.

 For Q4, Q5, Q6 and Q7 the Mean Latency ranges between 2011,12 and 2156,60. Also

Max Latency ranges between 4135 and 4421. Q4 has the maximum Mean Latency and

maximum Max Latency. Q7 has the minimum Mean Latency and Q6 has the minimum Max

Latency. But Q4 has services most jobs, 759, rather Q7 which has serviced 610 jobs, of about

100 each.

 From all queues Q0 has the maximum Mean Latency and Max Latency. Q7 has the

minimum Mean Latency and Max Latency. But Q0 services most jobs 1974, of 50 each,

rather Q7 which services 610 jobs, of 100 each.

 So if we have many small jobs we will choose Q0. If we have fewer small jobs and we

care about latency we will choose Q3. If we have many large jobs we will choose Q4. If we

have fewer large jobs and we care about latency we will choose Q7.

Number of cycles

L

a

t

e

n

c

y

43

6.8 Scenario 8. Average packet weight 100 for Q0-Q3, average packet weight

50 for Q4-Q7, minimum queue weight 300, maximum queue weight 1000.

 We have 8 queues as above. The weights of the queues have been assigned as

follows: Q0:1000, Q1:900, Q2:800, Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300. The

weights of the packets that are enqeued into queues are provided by the Poisson

distribution. For queues 0, 1, 2 and 3 the average weights of packets are 100. The queues 4,

5, 6 and 7 the average weights of packets are 50. So in Q0, above 10 packets with maximum

total weight equal to 1000 are enqeued, in Q1 above 9 packets with maximum total weight

equal to 900 are enqeued, and so on for queue 2 and 3. Q4 has weight 600, so about 12

packets with maximum total weight equal to 600 are enqeued, in Q5 above 10 packets with

maximum total weight equal to 500 are enqeued, and so on for queues Q4 and Q7. In all

cases the packets are enqeued just before the new cycle starts. This means that all queues

are empty when the new packets are inserted. Moreover, we assume an additional delay of

2 time quanta of each job, because reading, writing and transfer delay.

 Table 6.8-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10051 total serviced jobs, in 110 cycles.

Queue Mean Latency Mean Weight Max Latency Number of Jobs

0 2776.37523809524 99.7114285714286 5676 1050

1 2713.11212121212 100.083838383838 5564 990

2 2673.33724653148 99.6029882604056 5377 937

3 2629.11173814898 99.8092550790068 5393 886

4 4295.09613130129 49.8886283704572 6608 1706

5 3804.53875 49.86 6619 1600

6 3650.17222963952 49.6829105473965 6493 1498

7 3485.12066473988 49.7832369942197 6387 1384

Table 6.8-1 Results for packets with minimum queue weight 300, maximum queue weight 1000, average

packet weight 100 for Q0-Q3, average packet weight 50 for Q4-Q7.

44

Figure 6.8-1 Latency for packets with minimum queue weight 300, maximum queue weight

1000, average packet weight 100 for Q0-Q3, average packet weight 50 for Q4-Q7.

 The Mean Latency between Q0, Q1, Q2 and Q3 ranges between 2629,11 and

2776,35. Also Max Latency ranges between 5676 and 5377. Q0 has the maximum Mean

Latency and Max Latency. Q3 has the minimum Mean Latency and Q2 has the minimum

Max Latency. But Q0 has serviced most jobs, 1050, rather than Q3 which has serviced 886

jobs, of about 100 each.

 For Q4, Q5, Q6 and Q7 the Mean Latency ranges between 3485,12 and 4295,09. Also

Max Latency ranges between 6387 and 6619. Q4 has the maximum Mean Latency. Q5

maximum Max Latency, Q4 is next with very small difference (6608). Q7 has the minimum

Mean Latency and the minimum Max Latency. But Q4 has serviced most jobs, 1706, rather

Q7 which has serviced 1384 jobs, of about 50 each.

 So if we have many small jobs we will choose Q4. If we have fewer small jobs and we

care about latency we will choose Q7. If we have many large jobs we will choose Q1. If we

have fewer large jobs and we care about latency we will choose Q3.

6.9 Scenario 9. Average packet weight 100, insert 3 new packets every 800

quanta, minimum queue weight 300, maximum queue weight 1000.

 The scenario is based on the following assumptions. Suppose we have 8 queues.

Queue 0 (Q0) has the largest weight and queue 7 (Q7) the minimum weight. The weights of

the queues have been assigned as follows: Q0:1000, Q1:900, Q2:800, Q3:700, Q4:600,

Q5:500, Q6:400 and Q7:300. This means that Q0 can serve packets with total weight at most

Number of cycles

L

a

t

e

n

c

y

45

1000, Q1 at most 900, and so on. The maximum total weight that can service in a cycle is the

sum of the weights of all queues, which is 5200.

 The weights of the packets that are enqeued into queues are provided by the

Poisson distribution. The weight represents the execute time quanta of each packet. In our

example the average weights of packets are 100. The new packets are enqueued every 800

quanta. Τhe total number of new packets is 3 for each queue. This means that the packets

are enqeued during the cycle and that queues are non empty when the new packets are

inserted. So the new packets will be served in the next cycle. Additionally the enqueuing of

packets take place about 6,5 times per cycle. This means that in each cycle totally 19

packets, with 1900 total weights are enqueued in each queue. Hence in each queue equeue

more packets than can be serviced are enqueued.

 Moreover, we assume an additional delay of 2 time quanta of each job, because of

reading, writing and transfer delay.

 Table 6.9-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10016 total serviced packets.

Queue Mean Latency Mean Weight Max Latency Number of Jobs

0 93397.5945945946 99.2607607607608 179038 1998

1 139561.345546787 100.033258173619 272308 1774

2 180265.377394636 99.8690932311622 359649 1566

3 226233.677753141 100.311899482631 449688 1353

4 270598.750437828 100.039404553415 537827 1142

5 309950.241596639 99.3518907563025 617593 952

6 354316.690277778 100.319444444444 714030 720

7 400926.692759296 100.195694716243 800971 511

Table 6.9-1 Average packet weight 100, insert 3 new packets every 800 quanta, minimum queue weight

300, maximum queue weight 1000.

46

Figure 6.9-1 Latency for average packet weight 100, insert 3 new packets every 800 quanta,

minimum queue weight 300, maximum queue weight 1000.

 From the above table we can understand that in such case, the queue with

maximum weight (Q0, 1000) enjoys the minimum latency and the maximum number of

serviced jobs. Q7 serviced the fewest jobs with the maximum latency. So if we desired many

jobs to service with the minimum latency we would choose Q0. Otherwise if we choose Q7

then fewer jobs will have to wait for more service cycles to complete. In total we have 209

service cycles and 10016 total serviced jobs are submitted.

6.10 Scenario 10. Average packet weight 100, insert 3 new packets every 800

quanta, minimum queue weight 650, maximum queue weight 1000.

 We have 8 queues. Queue 0 (Q0) has the largest weight and queue 7 (Q7) the

minimum weight. The weights of the queues have been assigned as follows: Q0:1000,

Q1:950, Q2:900, Q3:850, Q4:800, Q5:750, Q6:700 and Q7:650. This means that Q0 can serve

packets with total weight at most 1000, Q1 at most 950, and so on. The maximum total

weight that can service in a cycle is the sum of the weights of all queues, which is 6600.

 The weights of the packets that are enqeued into queues are provided by the

Poisson distribution. The weight represents the execute time quanta of each packet. In our

Number of cycles

L

a

t

e

n

c

y

47

example the average weights of packets are 100. So the new packets will be served in the

next cycle.

 3 new packets are enqueued every 800 quanta. This means that the packets are

enqeued during the cycle and that queues are non empty when the new packets are

inserted. Additionally the enqueuing of packets take place about 8 times per cycle. This

means that in each cycle totally 24 packets, with 2400 total weights, are enqueued in each

queue. Hence in each queue are equeued more packets than can be serviced.

 Moreover, we assume an additional delay of 2 time quanta of each job, because of

reading, writing and transfer delay.

 Table 6.10-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10035 total serviced packets and 162 service cycles

Queue Mean Latency Mean Weight Max Latency Number of Jobs

0 190076.655642023 99.6634241245136 375360 1542

1 207838.589690722 100.039175257732 411114 1455

2 223753.073454545 99.8138181818182 444903 1375

3 239614.865637066 100.350579150579 477960 1295

4 258385.193574959 100.000823723229 511825 1214

5 274210.406660824 99.4609991235758 542454 1141

6 292585.232535885 100.444019138756 582382 1045

7 309263.135330578 99.7944214876033 614371 968

Table 6.10-1 Average packet weight 100, insert 3 new packets every 800 quanta, minimum queue weight 650,

maximum queue weight 1000.

 As in scenario 9 the queue with maximum weight (Q0, 1000) enjoys the minimum

latency and the maximum number of serviced jobs. Q7 serviced the fewest jobs with the

maximum latency. So if we desired many jobs to service with the minimum latency we

would choose Q0. Otherwise if we choose Q7 then fewer jobs will have to wait for more

time to be completed. In total we have 209 service cycles and 10034 total serviced jobs are

submitted.

48

 In comparison with scenario 9 (where about 10000 packets were served), Q0-Q3

have greater latency and fewer jobs served. On the other hand, Q3-Q7 have less latency but

more jobs served. Although the serviced packets are almost the same the number of cycle is

less (162 instead of 209). If we assume the same number of cycle then more jobs per queue

will be served, in comparison to scenario 9. This is due to queues weight, which is greater in

scenario 10, than in scenario 9.

6.11 Scenario 11. Average packet weight 50, insert 3 new packets every 800

quanta, minimum queue weight 650, maximum queue weight 1000.

 We have 8 queues. Queue 0 (Q0) has the largest weight and queue 7 (Q7) the

minimum weight. The weights of the queues have been assigned as follows: Q0:1000,

Q1:950, Q2:900, Q3:850, Q4:800, Q5:750, Q6:700 and Q7:650. This means that Q0 can serve

packets with total weight at most 1000, Q1 at most 950, and so on. The maximum total

weight that can service in a cycle is the sum of the weights of all queues, which is 6600.

 The weights of the packets that are enqeued into queues are provided by the

Poisson distribution. The weight represents the execute time quanta of each packet. In our

example the average weights of packets are 50. So the new packets will be served in the

next cycle.

Number of cycles

L

a

t

e

n

c

y

Figure 6.10-1 Latency for average packet weight 100, insert 3 new packets every 800 quanta, minimum

queue weight 650, maximum queue weight 1000.

49

 3 new packets are enqueued every 800 quanta. This means that the packets are

enqeued during the cycle and that queues are non empty when the new packets are

inserted. Additionally the enqueuing of packets take place about 8 times per cycle. This

means that in each cycle totally 24 packets, with 2400 total weights, are enqueued in each

queue. Hence in each queue are equeued more packets than can be serviced.

 Moreover, we assume an additional delay of 2 time quanta of each job, because of

reading, writing and transfer delay.

 Table 6.11-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10075 total serviced packets.

Queue Mean Latency Mean Weight Max Latency Number of Jobs

0 5280.03301886792 49.2767295597484 6781 1272

1 5315.37716535433 50.3748031496063 6491 1270

2 5368.7474429583 50.1054287962234 6633 1271

3 5418.1332807571 49.98738170347 6493 1268

4 5470.12066246057 50.057570977918 6549 1268

5 5544.24861878453 49.8468823993686 6999 1267

6 6534.18304278922 50.4112519809826 8802 1262

7 20283.7593984962 49.7852965747703 33894 1197

Table 6.11-1 Average packet weight 50, insert 3 new packets every 800 quanta, minimum queue weight 650,

maximum queue weight 1000.

 From the above table we can work out that in such case, the queue with maximum

weight (Q0, 1000) enjoys the minimum latency and the maximum number of serviced jobs,

but with little difference compared with queues Q1-Q5. Q7 serviced the fewest jobs, as

expected, with the maximum latency, about five times greater than Q0. Q6 achieves better

performance in relation to Q7. So if we desired many jobs to be serviced with the minimum

latency we would choose Q0 and then one queue of Q1-Q5. Otherwise if we choose Q7,

then fewer jobs will have to wait for more time to complete. Also Q7 achieves the worst

performance due to large number of enqeuing packets (24 per cycle), while just 13 packets

may be serviced per cycle. In total we have 95 service cycles and 10075 total serviced jobs

are submitted.

50

Figure 6.11-1 Latency for average packet weight 50, insert 3 new packets every 800 quanta, minimum queue

weight 650, maximum queue weight 1000.

6.12 Scenario 12. Average packet weight 50, insert 3 new packets every 800

quanta, minimum queue weight 300, maximum queue weight 1000.

 As in the previous scenario, but in this example the weights of the queues have been

assigned as follows: Q0:1000, Q1:900, Q2:800, Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300.

The average weights of packets are 50. Table 6.12-1 shows the Mean Latency, Mean Weight,

Max Latency, and Number of serviced Jobs, for 10036 total serviced packets, in 208 cycles.

Queue Mean Latency Mean Weight Max Latency Number of Jobs

0 2252.02821316614 49.2766457680251 5232 1276

1 2284.76983503535 50.3794186959937 5066 1273

2 2334.9677672956 50.1147798742138 4949 1272

3 2383.08818897638 49.9370078740157 4981 1270

4 2430.23599052881 50.0568271507498 5034 1267

5 2516.33412322275 49.8515007898894 5276 1266

6 3039.63370253165 50.3773734177215 9051 1264

7 34546.206445993 49.8214285714286 48875 1148

Table 6.12-1 1 Average packet weight 50, insert 3 new packets every 800 quanta, minimum queue weight 300,

maximum queue weight 1000.

Number of cycles

L

a

t

e

n

c

y

51

Figure 6.12-1 1 Latency for average packet weight 50, insert 3 new packets every 800 quanta, minimum

queue weight 300, maximum queue weight 1000.

 In comparison with scenario 11 208 cycles were needed for 10036 packets to be

served rather 95 cycles for 10075 packets to be served. This seems reasonable since the

weights of packets are less so more cycles are needed to serve the same number of jobs. The

queue with maximum weight (Q0, 1000) enjoys the maximum number of serviced jobs and

the minimum latency, but with little difference compared with queues Q1-Q5. Q7 serviced

the fewest jobs, as expected, with the maximum latency, about five times greater than Q0.

This is due to the large number of enqeuing packets (24 per cycle) while only 13 packets may

be serviced per cycle. Q6 achieves better performance in relation to Q7. In total we have 208

service cycles and 10036 total serviced jobs are submitted.

 The following measurements are based on the same scenario. At the beginning all

the queues are full with the maximum number of packets that can be served in a cycle. Each

time a packet is dequeued then a new packet is enqueued in the same queue. In this way the

queues are always full. The new packets will be served in the next cycle.

6.13 Scenario 13. Average packet weight 100, minimum queue weight 300,

maximum queue weight 1000. Each time a packet is dequeued then a new

packet is enqueued in the same queue.

 Suppose we have 8 queues. Queue 0 (Q0) has the largest weight and queue 7 (Q7)

the minimum weight. The weights of the queues have been assigned as follows: Q0:1000,

Q1:900, Q2:800, Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300. This means that Q0 can serve

Number of cycles

L

a

t

e

n

c

y

52

packets with total weight at most 1000, Q1 at most 900, and so on. The maximum total

weight that can service in a cycle is the sum of the weights of all queues, which is 5200.

 The weights of the packets that are enqeued into queues are provided by the

Poisson distribution. The weight represents the execute time quanta of each packet. In our

example the average weights of packets are 100. Table 6.13-1 shows the Mean Latency,

Mean Weight, Max Latency, and Number of serviced Jobs, for 10003 total serviced packets,

in 225 cycles.

Queue Mean Latency Mean Weight Max Latency Number of Jobs

0 4426.63968795709 98.2662116040956 5572 2051

1 4423.33920704846 98.454295154185 4768 1816

2 4422.75031446541 98.8509433962264 4778 1590

3 4421.88619676946 98.298825256975 4768 1362

4 4420.99383259912 98.2105726872247 4779 1135

5 4419.76670317634 98.7338444687842 4755 913

6 4416.56304985337 99.0630498533724 4751 682

7 4417.45374449339 99.2599118942731 4755 454

Table 6.13-1 Each time a packet is dequeued then a new packet is enqueued in the same queue. Average

packet weight 100, minimum queue weight 300, maximum queue weight 1000.

Figure 6.13-1 Latency for each time a packet is dequeued then a new packet is enqueued in the same queue.

Average packet weight 100, minimum queue weight 300, maximum queue weight 1000.

Number of cycles

L

a

t

e

n

c

y

53

 The Mean Latency is approximately the same for all queues. Q0 has the maximum

latency. This occurs in the first cycle so it isn’t representative. Q0 has serviced most jobs,

2051, next is Q1 which has serviced 1816 jobs, and so on. Q7 has serviced fewer jobs, 454.

So Q0 has the best performance followed by the other queues.

6.14 Scenario 14. Average packet weight 50, minimum queue weight 300,

maximum queue weight 1000. Each time a packet is dequeued then a new

packet is enqueued in the same queue.

 As in the previous scenario, but in this example the average weights of packets are

50. Table 6.14-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10065 total serviced packets, in 106 cycles.

Queue Mean Latency Mean Weight Max Latency Number of Jobs

0 4837.83384615385 48.9389743589744 5615 1950

1 4832.87843137255 48.5058823529412 5233 1785

2 4831.48795944233 48.8384030418251 5241 1578

3 4829.6754194019 48.4106491611962 5230 1371

4 4826.44069264069 48.0337662337662 5234 1155

5 4824.74661105318 48.8571428571429 5227 959

6 4818.84124830393 48.4803256445048 5217 737

7 4815.26603773585 48.3169811320755 5207 530

Table 6.14-1 Each time a packet is dequeued then a new packet is enqueued in the same queue. Average

packet weight 50, minimum queue weight 300, maximum queue weight 1000.

.

Figure 6.14-1 Latency for each time a packet is dequeued then a new packet is enqueued in the

same queue. Average packet weight 50, minimum queue weight 300, maximum queue weight 1000

Number of cycles

L

a

t

e

n

c

y

54

 The conclusions from Table 6.14-1 are the same as in scenario 13. Q0 has serviced

most jobs, 1950, next is Q1 which has serviced 1785 jobs, and so on. Q7 has serviced fewer

jobs, 530. So Q0 has the best performance followed by the other queues.

6.15 Scenario 15. Average packet weight 100, minimum queue weight 650,

maximum queue weight 1000. Each time a packet is dequeued then a new

packet is enqueued in the same queue.

 The weights of the queues have been assigned as follows: Q0:1000, Q1:950, Q2:900,

Q3:850, Q4:800, Q5:750, Q6:700 and Q7:650. The maximum total weight that can be

serviced in a cycle is the sum of the weights of all queues, which is 6600. This implies that

more jobs can be served in a cycle, compared to the previous scenarios where the total

weight was 5200. In our example, the average weights of packets are 100. Table 6.15-1

shows the Mean Latency, Mean Weight, Max Latency, and Number of serviced Jobs, for

10041 total serviced packets, in 178 cycles.

Queue Mean Latency Mean Weight Max Latency Number of Jobs

0 5727.28176100629 98.3012578616352 6986 1590

1 5728.09986595174 98.5764075067024 6281 1492

2 5722.24184397163 98.2170212765957 6275 1410

3 5723.66559485531 99.1744372990354 6278 1244

4 5720.85227272727 98.6298701298701 6281 1232

5 5728.53405017921 98.5779569892473 6283 1116

6 5719.83996212121 98.4611742424242 6278 1056

7 5724.15427302997 98.2297447280799 6281 901

Table 6.15-1 Each time a packet is dequeued then a new packet is enqueued in the same queue. Average

packet weight 100, minimum queue weight 650, maximum queue weight 1000.

55

Figure 6.15-1 Latency for each time a packet is dequeued then a new packet is enqueued in the same queue.

Average packet weight 100, minimum queue weight 650, maximum queue weight 1000.

 From the above table we can understand that in such case, the Mean Latency is

approximately the same for all queues. Q0 has the maximum latency. This occurs in the first

cycle so it isn’t representative. Q0 has serviced most jobs, 1590, next is Q1 which has

serviced 1492 jobs, and so on. Q7 has serviced fewer jobs, 901. So Q0 has the best

performance followed by the other queues.

 In comparison with scenario 13, the only difference is in the weights of the queues,

since the packets have the same Mean Weight, which is 100. As a result, in scenario 14 Q0,

Q1, Q2, Q3 have served fewer jobs than scenario 13. Moreover Q4, Q5, Q6, Q7 have served

more jobs than in scenario 13. Such a small decrease in the weight of queues has result in

slight changes in the total number of serviced packets between neighboring tails.

6.16 Scenario 16. Average packet weight 50, minimum queue weight 650,

maximum queue weight 1000. Each time a packet is dequeued then a new

packet is enqueued in the same queue.

 As in the previous scenario, the weights of the queues have been assigned as

follows: Q0:1000, Q1:950, Q2:900, Q3:850, Q4:800, Q5:750, Q6:700 and Q7:650. But in this

example the average weights of packets are 50. Table 6.16-1 shows the Mean Latency,

Mean Weight, Max Latency, and the Number of serviced Jobs, for 10041 total serviced

packets, in 82 cycles.

L

a

t

e

n

c

y

Number of cycles

56

Queue Mean Latency Mean Weight Max Latency Number of Jobs

0 6172.39896707553 48.5842479018722 7090 1549

1 6165.38143631436 48.579945799458 6708 1476

2 6164.97780959198 48.4874731567645 6716 1397

3 6163.29543634908 48.8783026421137 6697 1249

4 6163.16530944625 48.4771986970684 6690 1228

5 6160.36271808999 49.0982552800735 6686 1089

6 6157.75609756098 48.4634146341463 6662 1066

7 6155.9179331307 48.2330293819656 6657 987

Table 6.16-1 Each time a packet is dequeued then a new packet is enqueued in the same queue. Average

packet weight 50, minimum queue weight 650, maximum queue weight 1000.

 From table 6.16-1 we can figure out that in such case, the latency is Q0 has the

maximum Mean Latency and Q7 the minimum, but the difference between them is only 17

quanta. This occurs in the first cycle so it isn’t representative. Q0 has serviced most jobs,

1549, next is Q1 which has serviced 1476 jobs, and so on. Q7 has serviced fewer jobs, 987. So

Q0 has the best performance followed by the other queues.

 In comparison with scenario 15, the only difference is in the weights of the packets,

which is 50, whereas in scenario 15 it is 100. In both cases the number of serviced job is

almost the same. But in scenario 15 the Mean Latency is less. Therefore larger weight of

packet accrues better Mean Latency.

Number of cycles

L

a

t

e

n

c

y

Figure 6.16-1 Latency for each time a packet is dequeued then a new packet is enqueued in the same

queue. Average packet weight 50, minimum queue weight 650, maximum queue weight 1000.

57

 In comparison with scenario 14 the only difference is in the weights of the queues,

since the packets have the same Mean Weight, which is 50. As a result, in scenario 16 Q0,

Q1, Q2, Q3 have served fewer jobs than scenario 14. Also Q4, Q5, Q6, Q7 have served more

jobs than scenario 14. So a small decrease in the weight of the queues has as a result the

small changes in the total number of serviced packets between neighboring tails.

58

7. Conclusions and Future extension

 In comparison to algorithms presented in related works, the algorithm now

presented resembles Weighted Round Robin and Deficit Round Robin. However, both

algorithms have been recommended for use in computer networks. WRR has been

proposed for asynchronous transfer mode (ATM) networks and DRR for servicing queues in

a router (or gateway). A necessary condition for WRR is the fixed size of packet. Each packet

needs to have the same size in all queues. In contrast, the proposed algorithm is

independent of the packet size. Also DRR services packets of different size but at the same

time it services all packets together. Our algorithm, however, services one packet from a

queue at a time. But in total, more than one packet will be served in proportion to queue

weight. The enqueue time of serviced packets is also unclear for WRR and DRR. The above

algorithms served all the packets independent of the enqueue time. For reason of fairness,

though, the proposed algorithm serves only the packets that have been queued before a

new cycle has started.

 The algorithm combines different algorithmic techniques. Each separate queue is a

queue FIFO. Ιt doesn’t require a sorted priority queue. So it is easy to be implemented and

at the same time no computing power for classification is wasted. There is no prioritization

which means that each process may eventually be completed, therefore, no starvation. All

queues are organized as a multi-queue technique. Each queue has different total weight.

Hence the total number of serviced job is proportional to the total weight for each queue.

In a cycle the maximum total weight that can be served is at most equal to the sum of the

weights of queues. For reasons of fairness the scheduler serves only the packets that have

been enqueued when the cycle started. New packets enqueuing after the cycle is started

will serve in the next cycle. When a new cycle started the first queue (the queue with the

maximum weight) isn’t examined first but the control continues from the next queue where

it left off the previous cycle. Otherwise the lower weight tails will be served too late.

Admittedly this favors the queues with lower weight in case of simultaneously enqueuing of

new packets to all queues or enqueuing new packets just before the start of the new cycle.

However, in a real time system this is rarely case, since in such systems the enqueue of a

packet is continuously performed and furthermore not at the same time for all queues.

59

 The queue with the highest weight serves larger number of packets. The queue with

the lowest weight serves less number of packets. But the tail with the largest weight has a

greater latency per cycle and the queue with less weight has less latency if the packets are

enqueued just before the new cycle starts. If the weight of the packet (packet wi) is smaller

the difference in the average latency between neighboring queues is more balanced. If the

packets are enqueued during the cycle, then the queue with largest weight has less mean

latency. Also less weight of packets has as a result more packets to be serviced in the queue

per cycle. Moreover the increase of the weight of the tail has as a result greater number of

serviced jobs.

 If in the tails are enqueued packets weighing more than the weight of a queue, then

there is bottleneck. The problem is most acute in the lower weight queues where major

service delays occur. If the weights packets follow a normal distribution and the enqueued

packets have less weight than the weight of the queues the algorithm behaves like WRR

with small differences in the average latency and the total number of performing packet per

queue.

 The timing of the enqeuing of packets is important to the performance of the

algorithm. If new packets are enqueued at the beginning of the cycle they will serve in the

next cycle so it will have the greatest latency. The ideal insertions of new packets take place

just before the start of the new cycle, something hard in real-time systems. Moreover the

selection of the queue for the enqueue of packets affects the performance of the algorithm.

If there are several packets to serve, it is better to select heavy queues. If we are interested

in the execution time of a process it is best queues to select with less weight.

 Depending on the policy we want to follow we can make various modifications to the

algorithm. In our algorithm the new enqueuing packets are not served during the same

cycle. For reasons of fairness they will be served in the next cycle. Another idea is always to

serve the new packets until the permitted weight of the queue, and not to wait for the next

cycle. Another aspect is to serve the new packets until the queue weight; but if the queue

becomes empty during the cycle without achieving the maximum serviced weight and then

new packets are enqueued, these new packets will be served in the next cycle. This is easily

done in our algorithm if the control of the field order is not to take place. Another

60

modification, similar to deficit round robin, is the remaining weight that is not served during

the cycle to be added to the weight of the next cycle. However, in such case, the maximum

serviced weight will be not fixed in a cycle.

61

References

[1] Rogers, P. (2013). Heterogeneous system architecture overview. In Hot Chips(Vol. 25).

[2] Rajput, I. S., & Gupta, D. (2012). A priority based round robin CPU scheduling algorithm

for real time systems. International Journal of Innovations in Engineering and

Technology, 1(3), 1-11.

[3] Kinsy, M., & Devadas, S. (2014, September). Algorithms for scheduling task-based

applications onto heterogeneous many-core architectures. In High Performance

Extreme Computing Conference (HPEC), 2014 IEEE (pp. 1-6). IEEE.

[4] Kyriazis, G. (2012). Heterogeneous system architecture: A technical review.AMD Fusion

Developer Summit.

[5] Chitlur, N., Srinivasa, G., Hahn, S., Gupta, P. K., Reddy, D., Koufaty, D., & Iyer, R. (2012,

February). QuickIA: Exploring heterogeneous architectures on real prototypes. In

High Performance Computer Architecture (HPCA), 2012 IEEE 18th International

Symposium on (pp. 1-8). IEEE.

[6] ARM big.LITTLE, 2015, [online] available from: < https://en.wikipedia.org/wiki/ARM_big.

LITTLE> [accessed 12/10/2015]

[7] Thompson, C. J., Hahn, S., & Oskin, M. (2002, November). Using modern graphics

architectures for general-purpose computing: a framework and analysis. In

Proceedings of the 35th annual ACM/IEEE international symposium on

Microarchitecture (pp. 306-317). IEEE Computer Society Press.

[8] Lee, H., Faruque, A., & Abdullah, M. (2014, March). GPU-EvR: Run-time event based real-

time scheduling framework on GPGPU platform. In Design, Automation and Test

in Europe Conference and Exhibition (DATE), 2014 (pp. 1-6). IEEE.

[9] Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A parallel programming standard for

heterogeneous computing systems. Computing in science & engineering, 12(1-3),

66-73.

[10] Fang, J., Varbanescu, A. L., & Sips, H. (2011, September). A comprehensive performance

comparison of CUDA and OpenCL. In Parallel Processing (ICPP), 2011

International Conference on (pp. 216-225). IEEE.

[11] Karimi, K., Dickson, N. G., & Hamze, F. (2010). A performance comparison of CUDA and

OpenCL. arXiv preprint arXiv:1005.2581.

[12] Srinivasan, A. (2003). Efficient and flexible fair scheduling of real-time tasks on

multiprocessors (Doctoral dissertation, University of North Carolina at Chapel

Hill).

62

[13] Kaladevi M, Phil M. &.Sathiyabama S, (2010) “A Comparative Study of Scheduling

Algorithms for Real Time Task”, International Journal of Advances in Science and

Technology, (Vol. 1, No. 4).

[14] Sirohi, A., Pratap, A., & Aggarwal, M. (2014). Improvised Round Robin (CPU) Scheduling

Algorithm. International Journal of Computer Applications, 99(18), 40-43.

[15] Di Francesco, P., & Sweden, V. (2012). Design and implementation of a MLFQ scheduler

for the Bacula backup software (Doctoral dissertation, Master thesis in Global

Software Engineering).

[16] Lamminen, O. P. (2007). Implementation and performance analysis of a delay based

packet scheduling algorithm for an embedded open source router (Doctoral

dissertation, Helsinki University of Technology).

[17] Abraham Silberschatz, P. B. Galvin, G. Gagne, (2005), Operating System Concepts,7th

edition, John Wiley & Sons.

[18] Katevenis, M., Sidiropoulos, S., & Courcoubetis, C. (1991). Weighted round-robin cell

multiplexing in a general-purpose ATM switch chip. Selected Areas in

Communications, IEEE Journal on, 9(8), 1265-1279.

[19] Shreedhar, M., & Varghese, G. (1995, August). “E cient fair queuing using de cit round

robin", In Proceedings of the ACM SIGCOMM (Vol. 95).

[20] Kinsy, M., & Devadas, S. (2014, September). Algorithms for scheduling task-based

applications onto heterogeneous many-core architectures. In High Performance

Extreme Computing Conference (HPEC), 2014 IEEE (pp. 1-6). IEEE.

[21] Arabnejad, H., & Barbosa, J. G. (2014). List scheduling algorithm for heterogeneous

systems by an optimistic cost table. Parallel and Distributed Systems, IEEE

Transactions on, 25(3), 682-694.

[22] Duran, A., Ayguadé, E., Badia, R. M., Labarta, J., Martinell, L., Martorell, X., & Planas, J.

(2011). Ompss: a proposal for programming heterogeneous multi-core

architectures. Parallel Processing Letters, 21(02), 173-193.

[23] Chronaki, K., Rico, A., Badia, R. M., Ayguadé, E., Labarta, J., & Valero, M. (2015).

Criticality-Aware Dynamic Task Scheduling for Heterogeneous Architectures

[24] Shetti, K. R., Fahmy, S., & Bretschneider, T. (2013, December). Optimization of the HEFT

algorithm for a CPU-GPU environment. In Parallel and Distributed Computing,

Applications and Technologies (PDCAT), 2013 International Conference on (pp.

212-218). IEEE.

[25] Topcuoglu, H., Hariri, S., & Wu, M. Y. (2002). Performance-effective and low-complexity

task scheduling for heterogeneous computing. Parallel and Distributed Systems,

IEEE Transactions on, 13(3), 260-274.

63

[26] Canon, L. C., Jeannot, E., Sakellariou, R., & Zheng, W. (2008, January). Comparative

evaluation of the robustness of dag scheduling heuristics. In Grid Computing (pp.

73-84). Springer US.

[27] Beaumont, O., Boudet, V., & Robert, Y. (2001). The iso-level scheduling heuristic for

heterogeneous processors.

