WEIGHTED SCHEDULING IN HETEROGENEOUS ARCHITECTURES FOR
OFFLOADING VARIABLE-LENGTH KERNELS

by

PRATIKAKIS MENELAOS

B.A. CSD, University of Crete, 1998

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF ELECTRONIC ENGINEERING
SCHOOL OF APPLIED SCIENCES

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE

2015

Approved by:

Major Professor
Kornaros George

Abstract

Heterogeneous System Architecture (HSA) is a type of computer processor
architecture that integrates different processor architectures, for example central
processing units and graphics processors, on the same bus with shared tasking and
memory. These systems have different processes from different sources, with
different priorities and weights, which are required to be performed by different
processors architectures.

The above is achieved by scheduling. Scheduling is the process by which
processes are given access to system resources (e.g. processor cycles,
communications bandwidth). The demand for fast computer systems, the execution
of multiple processes simultaneously (multitasking) and requirement for transmitting
multiple flows simultaneously (multiplexing) have as a result the need for an efficient
scheduling algorithm. The basic function of the scheduler is to determine which
process will be run when there are several runnable processes. Therefore the
scheduler choices have an impact on the utilization of system resources and other
performance parameters. There exists a number of CPU scheduling algorithms like
First Come First Serve, Shortest Job First Scheduling, Round Robin scheduling,
Priority Scheduling etc, but due to a number of disadvantages these are rarely used
in real time operating systems except Round Robin scheduling. Especially in a
heterogeneous multicore system with existence of multiple queues with different
priority and weight each, the scheduling/ dispatching of each queue separately and
on the whole, is a critical issue. The purpose is to find, study and implement in a
program language such us C, an algorithm to achieve a better management in such

queues.

Zovoyn

e €va ETEPOYEVEC OUOTNUA OPXLTEKTOVIKAG ouvdudlovtol SLapOopeTIKES
OPXLTEKTOVIKEG EMEEEPYAOTWY, VL0 TIAPASELYHUA, KEVIPIKWVY MOVAdwv emetepyaciog
Kol emefepyaoTeG ypadlkwy, oL omolol pumopet va cuvdéovtal otov iblo diaulo, va
potpalovtal Slepyaciec kal va €xouv Kowoxpnotn HvAun. Ta cuoTtApaTo autd
6éxovtal Oladopetikéc Sladilkaoieg amod Siadopeg TmNyEC, HE OLAdOPETIKEG
TIPOTEPALOTNTEG KAl BApPn, OL OTOLEG yLa TNV EKTEAEGN TOUG AMALTOUV SLAdOPETIKES
OPXLTEKTOVIKEG EMEEEPYOOTWV.

Ta mapamdvw €mituyxdvovial e TNV XpovodpouoAdynon. H
xpovodpopoldynon eivat n Swadkaoia pe tnv omola oL Slepyaocieg amoKTouv
POoPaocn oToug MOPOUG TOU CUCTANATOG (.. Emegepyaotr), LvApn K.a). H avdykn
yla évav alyoplOpo xpovodpopoAoynonc MPOKUTTEL Ao TNV Omaitnon ypnyopwv
UTTIOAOYLOTWV CUCTNUATWY yla Tnv emiteuvén moAuvenegepyaoiag (ektéAeon
nepLoootepwV amo pia Siepyoocia kaBe dopd) kat moAumAefiag (tautdxpovn
petadoon moMamAwv powv). H xpovoSpopoAoynon elvat pla BepeAwdng
Aettoupyla Tou Aettoupykol ocuotipatog mou koabBopilet mowa Stadikacia Oa
EKTEAEOTEL, OTAV UTIAPXOUV TIOANEG EKTEAECLUEG SLASLKAOLEC.

O tpdnog xpovodpopoldynong tng CPU eival blaitepa onUavtikog emewdn
€XEL avTiktumo otnv aflomoinon Twv MOPWV TOU CUCTHUATOC KOL OTLC TIAPUUETPOUC
TwV embooewv. Yapxel po mMAnbwpa amnod alyoplbpoug xpovodpopoAdynong Omwg
N oupd TPOTEPALOTNTAC, N CUVTIOHUOTEPN EpyOOia TPWTN, N XPovodpouoAoynaon
Round Robin, n xpovodpopoAdynon pe Baon tnv mpotepatdtnta KAT, aAld e§attiag
HLOG OELPAC OO UELOVEKTAHUOTO OUTEG OL TEXVIKEC OTIAVIO XPNOLUOTOLoUVTAL OTa
AELTOUPYLKA CUCTHUATA TIPAYUATIKOU XPOVOU, EKTOC TNG XpovodpopoAoynong Round
Robin. EWbika oe éva €tepoyevéC cUOTNUA TIOAAMAWY TIUPAVWY, HE TNV Umopén
TMOAMATAWY 0UPWYV, HE OLOPOPETIK TPOTEPALOTNTA Kal BApog n kaBepia, n
Sladikaoia xpovodpopoAroynong/amnootolng Sltepyactwv and kabe oupd Eexwplotd

0AAG 0TO OUVOAO TOUG, €lval £va Kplolpo {Atnua.

O okomoc¢ NG mapovoag epyaciag tav va BpeBbei, pedetnOel kat ulomotnOetl
0 MLo YAWOOO TIPOYPOMMATIONOU, OTwe N C, évag aAyoplBuog, Baclopevog ota

Bdapn Twv gpyactwy, yla va erteuyxBel KaAUTEPN SLOXELPLON TETOLWY OUPWV.

Table of Contents

Y o1 1 T TP RO PPROPRRPRR i
DU RY o T o TR iii
Table Of CONTENTSeeeeiiie ettt e e st e s bt e e s b e s ne e e sareesnenesareeas v
[T o T =0T TSN viii
LISt Of TaBIES ..ttt st st st ne e s et nre e X
ACKNOWIBAGMENTS ...eeeiiiiieee et e e et e e e st ae e e sente e e e sntaeeesstaeeesanteaaesnns Xii
N [0 4o o [N ot o T3 DTS PO PP PRTOPRRRTRP 1
1.1 Research questions and MethodolOogycceeeeieeiiiiiiiiei e, 1

2 ObjJective Of the StUAYcuiiii e e e e e et re e e e e e e e e nnareaeeeas 3
3 Heterogeneous arChit@CtUIEuviiieie ittt e e e e e e e rre e e e e e e e e nnnreaeeeas 4
3.1 Types of heterogeneous archit@CtUIeocuveiiiciiee i 6
3.2.1 CUDA-OPEN CL ettt ettt st sttt ettt st et esbeeseeesanesaneeas 10

4 Background on scheduling algorithmscooociiiiiiiie e 12
4.1 General principles of Scheduling Algorithmscoovcciiiiiie e, 12
Yol o 1T (U] oY= O g =Y o - TSRS 13
4.3 General Scheduling algorithms..........ceeviii e 14
4.3.1 First Come First SErved (FCFS)ooouuriieiiiieeiiiieeee ettt e eeeeirree e e e e eeeaareeee s 14
4.3.2 Shortest JOD First (SIB) [14] ...ccoiiiiiiiieieeee ettt e eeesrrree e e e e eeearrreeee s 15
4.3.3 Priority SChEAUIING ...ceei it e et e e e aaaeeean 16
4.3.4 Multilevel queue sSChedulinguuvviiiii e 17
4.3.5 Multilevel feedback queue scheduling..........ccceeeiiiiiiciiiieee e, 18
4.3.6 ROUND RODIN c.eiiiiiie ettt st 19
4.3.7 Weighted ROUNd RODINcoiiiiiiiiiiec ettt e 20
4.3.8 Deficit ROUNA RODIN ..ottt 20

4.4 Heterogeneous scheduled techniqUES..........c.c..vvvviiii i 21
4.5 Heterogeneous Scheduling CategOoriescccuvvieeieeeeecciiieeeee et e e e ecnrrre e e 21
4.5.1 Static and dynamic SChedulers........ ..o 22
4.5.2 Clustering, Listing, Duplication-based and Guided-random schedulers................. 22

4.6 Basic Heterogeneous Scheduling Algorithms.........cceeiiiiii e, 24
BB 1 HEFT ...ttt sttt et e sb e she e st st s bt e b e b e ne e st e et e eaeeeneean 24
B.6.2 CPOP ..ottt ettt e e e ettt e e e e e e b b be e e e e e e e e bbb et e e e e e seaanrreeeeeas 24

T [oY o] =T 0 a V=T o1 - | To o [SRR 26

S 2 =T Tl [=Y N 26
5.2 Algorithm DESCIIPLION ..ueeeieiiieiieieee e e e e e e e e e e e e eaerre e e e e e e e esannnes 26
SV e L C=1 0 1= L PP PRPPPR 31

6.1 Scenario 1. As many packets as can be served in a cycle, average packet weight 100,
minimum queue weight 300, maximum queue weight 1000.cc..coeeeciiieeeeeeececinrenennn. 31

6.2 Scenario 2. As many packets as can be served in a cycle, average packet weight 50,
minimum queue weight 300, maximum queue weight 1000.ccccceeeviveeeiiiieeeeccireee s 33

The weight of each queue, the total weight, the mode and the time of enqueing packets
are the same as previous. The only difference is the weight of each packet. The weight is
given by Poisson distribution; with distributed value 50, rather 100 in the previous
scenario. So Q0 has weight 1000 and can accept maximum 20 jobs of 50 each, rather 10
jObS iN SCENATIOL, ANA SO ON. ceiiiiiiiiieeee et e e e e e e e e erb e e e e e e e e e s enesreeeeeaeessnnnnnns 33

6.3 Scenario 3. As many packets as can be served in a cycle, average packet weight 100,
minimum queue weight 650, maximum queue weight 1000.ccccceeeviveeeiiviieeeecieeee s 34

6.4 Scenario 4. As many packets as can be served in a cycle, average packet weight 50,

minimum queue weight 650, maximum queue weight 1000.c...coeeeciiiieeeeeeeeccnienennn. 36
6.5 Scenario 5. Average packet weight 100, weight 300 of each queue.........ccccceeeeeennnnnes 37
6.6 Scenario 6. Average packet weight 100, weight 1000 of each queue..........cccceeeeuvneee.. 39

6.7 Scenario 7. Average packet weight 50 for Q0-Q3, average packet weight 100 for Q4-
Q7, minimum queue weight 300, maximum queue weight 1000.............cccccvriereeeeeeerecnnnne 41

6.8 Scenario 8. Average packet weight 100 for Q0-Q3, average packet weight 50 for Q4-
Q7, minimum queue weight 300, maximum queue weight 1000.............cccceeervcrveeercrnenenn. 43

6.9 Scenario 9. Average packet weight 100, insert 3 new packets every 800 quanta,
minimum queue weight 300, maximum queue weight 1000.cc..ceeeeciiiieeeeeeececcirienennn. 44

6.10 Scenario 10. Average packet weight 100, insert 3 new packets every 800 quanta,
minimum queue weight 650, maximum queue weight 1000.ccccceeeviveeeiiciieeeecineee s 46

6.11 Scenario 11. Average packet weight 50, insert 3 new packets every 800 quanta,
minimum queue weight 650, maximum queue weight 1000.c...coeeeeiiiieeeeeeececirienennn. 48

6.12 Scenario 12. Average packet weight 50, insert 3 new packets every 800 quanta,
minimum queue weight 300, maximum queue weight 1000.ccccceeeviveeeiiviveeeecieeee s 50

6.13 Scenario 13. Average packet weight 100, minimum queue weight 300, maximum
gueue weight 1000. Each time a packet is dequeued then a new packet is enqueued in the
SAMNE QUEUE. .uvvvuvuvuuueueueteueueueuaeeseaeseseseseseseaesesesesesesesesesssesssssssssssssssssssssssssssssssssssssnsnsssssnssnsnns 51

6.14 Scenario 14. Average packet weight 50, minimum queue weight 300, maximum
gueue weight 1000. Each time a packet is dequeued then a new packet is enqueued in the
SAMNE (UEUE. ..evvveueueueuurerererennnnneresesesesesssesesnsennsssnsssssnsnsssnsssssssnsnsssssnsssnsnsnnnsnnsnnnnsnsnnnnnnnnnnnnnnnn 53

Vi

6.15 Scenario 15. Average packet weight 100, minimum queue weight 650, maximum
gueue weight 1000. Each time a packet is dequeued then a new packet is enqueued in the
SAMNE QUEUE. ..vuvtvuuuuurueuereeeueueuaueseaesesaseseseseaesesesesssesesesesssesssssssssssssssssssssssssssssssssssssnsnsnsnsnsnnnnns 54

6.16 Scenario 16. Average packet weight 50, minimum queue weight 650, maximum
gueue weight 1000. Each time a packet is dequeued then a new packet is enqueued in the

SAMNE QUEUE. ..vvvvvuuuuueuuuereeeueaeuaueseaeseseseseseseaesesesesesesesesesesesssssssssssssssssssssssssssssssssssssssnsnsnsnsnnnnns 55
7. Conclusions and FULUIE @XEENSIONevvviviiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeee et e e e e eeeeeeereeereeeseeereees 58
0 (] (=] A (L= LT 61

Vii

List of Figures

Figure 3-1 A simple HSA platform ... 5
Figure 3.1-1 Heterogeneous Architectures Under Exploration.........ccccceevvvvrveereeieninnnnns 6
Figure 3.1-2 CPU migration via the in-kernel switcher........cccccoovviieiiniiiiiiee, 7
Figure 3.1-3 heterogeneous multi-processing (MP)ccovvevivrrreeiieiiiiiciiieeeeee e 7
Figure 4.1-1 Queuing diagram for schedulingcccovvveeiiiiiiiiiciiieeee e 12
Figure 4.3.1-1 First ComE FirSTueueeeiiiiiiiiiiiiieieie ettt eeeeeeeeseseseseeeeenes 14
Figure 4.3.3-1 Priority QUEUINEcceeeeeeiiiicie e ettt e e e e e e e eettee e e e e e e e e esannee e e e eeesenennnas 16
Figure 4.3.3-2 Static and dynamic Priority.....cccecveeriiiiieeeiiiiieeecrieee e 16
Figure 4.3.4-1 MUltileVel QUEUINGcoovviiriieeiie ettt e e 17
Figure 4.3.5-1 Multilevel feedback QUEUINGccvviviiriiiiiiiiecee e 18
Figure 4.3.6-1 Context switches in Round RODIN......ccccuvveieiiiiiiiiiiiiieeiec e, 19
Figure 5.2-1 Schematic algorithm description........cccoccveviiiiiieiiniee e 27

Figure 6.1-1 Latency for as many packets as can be served in a cycle average packet
weight 100, min queue weight 300, max queue weight 1000.cccceeevvverrreeeenrennnns 32
Figure 6.2-1 Latency for as many packets as can be served in a cycle average packet
weight 50, min queue weight 300, max queue weight 1000.ccoeeerrvverrreeererennnns 34
Figure 6.3-1 Latency for as many packets as can be served in a cycle average packet
weight 100, min queue weight 650, max queue weight 1000.cccceeevvverrreeeenrennnns 35
Figure 6.4-1 Latency for as many packets as can be served in a cycle average packet
weight 50, min queue weight 650, max queue weight 1000.ccceeevrrvverereeerrrennnns 37
Figure 6.5-1 Latency for packets with weight 300 of each queue, average packet
WEIENT L00. it e e e ee e e e e e e seseabbbareeeeeeesesstrarareeeeeeeiananes 38
Figure 6.6-1 Latency for packets with weight 1000 of each queue, average packet
WEIBNT 100 ..ot eee e e e eee e s e s seeseeseeese s eeesesseeseseessesseeseeeeeens 40
Figure 6.7-1 Latency for packets with minimum queue weight 300, maximum queue

weight 1000, average packet weight 50 for Q0-Q3, average packet weight 100 for

Figure 6.8-1 Latency for packets with minimum queue weight 300, maximum queue

weight 1000, average packet weight 100 for Q0-Q3, average packet weight 50 for

Figure 6.9-1 Latency for average packet weight 100, insert 3 new packets every 800
quanta, minimum queue Weight 300.cccueiiiiiiieeeiriieee e sere e 46
Figure 6.10-1 Latency for average packet weight 100, insert 3 new packets every 800
guanta, minimum queue weight 650, maximum queue weight 1000......................... 48
Figure 6.11-1 Latency for average packet weight 50, insert 3 new packets every 800
guanta, minimum gqueue weight 650, maximum queue weight 1000............ccuuu...... 50
Figure 6.12-1 1 Latency for average packet weight 50, insert 3 new packets every 800
guanta, minimum gqueue weight 300, maximum queue weight 1000............cccuuu...... 51
Figure 6.13-1 Latency for each time a packet is dequeued then a new packet is
engueued in the same queue. Average packet weight 100, minimum queue weight
300, maximum queue Weight 1000.cooriiiieeiiiiieeeeiiieee e eireeeesiree e s sreeee s seeeeesnans 52
Figure 6.14-1 Latency for each time a packet is dequeued then a new packet is
enqueued in the same queue. Average packet weight 50, minimum queue weight
300, maximum queue WeIght 1000.coovverrrrerrreeeeiiiiiirrreeeeeeeeeierrrereeeeesssesensreneees 53
Figure 6.15-1 Latency for each time a packet is dequeued then a new packet is
enqueued in the same queue. Average packet weight 100, minimum queue weight
650, maximum queue Weight 1000.ccouverirrreerreeeeiiiiiirrreeeeeeeeeienrreeeeeeeessesensrenenes 53
Figure 6.16-1 Latency for each time a packet is dequeued then a new packet is
enqueued in the same queue. Average packet weight 50, minimum queue weight

650, maximum queue Weight 1000.cceeeeiiiiiieeeeee e e eeecrrere e e e e e e e erreaees 56

List of Tables

Table 3.1-1 Examples of Core+IP INtegrationcccceeuveeiiriiieeiiiiiiee e 6
Table 3.1-2 Examples of big-LITTLE heterogeneous Multi-SOC...........ccoovvvvrvverereeernnns 8-9
Table 6.1-1 Results for as many packets as can be served in a cycle, average packet
weight 100, min queue weight 300, max queue weight 1000.ccccvvvveeereeeennns 31-32
Table 6.2-1 Results for as many packets as can be served in a cycle, average packet
weight 50, min queue weight 300, max queue weight 1000.cceececviiireeeeeeniennns 33
Table 6.3-1 Results for as many packets as can be served in a cycle, average packet
weight 100, min queue weight 650, max queue weight 1000.ccccevivereeeeeeeiennns 35
Table 6.4-1 Results for as many packets as can be served in a cycle, average packet
weight 50, min queue weight 650, max queue weight 1000.cceeeccviiirreeeeeeeennns 36
Table 6.5-1 Results for packets with weight 300 of each queue, average packet
WEIBNT 100, .ot ee e eeee s e e eeseee s s s seeseeseeesee s eseeeeesseeseseessesseeseeeeeens 38
Table 6.6-1 Results for packets with weight 1000 of each queue, average packet
WEISINT 100, it e e e e e e e e e e e s tbrbereeeeeeesenanbbaaeeeeeeeeenans 39-40
Table 6.7-1 Results for packets with minimum queue weight 300, maximum queue

weight 1000, average packet weight 50 for Q0-Q3, average packet weight 100 for

Table 6.8-1 Results for packets with minimum queue weight 300, maximum queue

weight 1000, average packet weight 100 for Q0-Q3, average packet weight 50 for

Table 6.9-1 Average packet weight 100, insert 3 new packets every 800 quanta,
minimum queue weight 300, maximum queue weight 1000.cccceveeeieeiccnrveeeeeeenn. 45
Table 6.10-1 Average packet weight 100, insert 3 new packets every 800 quanta,
minimum queue weight 650, maximum queue weight 1000.cccoevveeeerrrieeeennnen. 47
Table 6.11-1 Average packet weight 50, insert 3 new packets every 800 quanta,
minimum queue weight 650, maximum queue weight 1000.cccoecveeeerrrveeeennnen. 49
Table 6.12-1 1 Average packet weight 50, insert 3 new packets every 800 quanta,

minimum queue weight 300, maximum queue weight 1000.cccevveeeerrrreeeennnen. 50

Table 6.13-1 Each time a packet is dequeued then a new packet is enqueued in the
same queue. Average packet weight 100, minimum queue weight 300, maximum
quUEUE WEIEHT 1000cccvrreeeieeeeiieiirrreee e e e eereirreeeeeeeeeeesstbareeeeeeeeessassrareeeeesssessnsrenenes 52
Table 6.14-1 Each time a packet is dequeued then a new packet is enqueued in the
same queue. Average packet weight 50, minimum queue weight 300, maximum
queue WEIZHT 1000.cccuveeieeeeeiiiiirrreee e e eererreeeeeeeeeeesrtbareeeeeeeeessssssrareeeeesssessnsrenenes 53
Table 6.15-1 Each time a packet is dequeued then a new packet is enqueued in the
same queue. Average packet weight 100, minimum queue weight 650, maximum
queue WEIZNE 1000.uuiiiiiiieeeeriiiee ettt e et e e s st e e e s sbaeeesssaraeeesssbeeeessabeaeessnseeeeesnnns 54
Table 6.16-1 Each time a packet is dequeued then a new packet is enqueued in the
same queue. Average packet weight 50, minimum queue weight 650, maximum

queue WEIZHT 1000.ccccvveeieeeeeiieiirrreeee e eeereirrereeeeeeesesstbrreeeeeeesessasrrareeeeesssessnsrenenes 56

Xi

Acknowledgments

| would like to express my sincere gratitude to Dr. George Kornaros, Lecturer
at the Department of Informatics Engineering of the Technological Educational
Institute of Crete and supervisor of the present master thesis, for the continuous
support of my Msc study and related research, for his patience, motivation, and
immense knowledge. His guidance helped me in all the time of research and writing
of this thesis. | could not have imagined having a better advisor and mentor for my
Msc study.

| would like to thank my family for supporting me spiritually throughout

writing this thesis as well as my good friend Fr Dimitrios.

October 2015,

Menelaos Pratikakis

Xii

1 Introduction

Heterogeneous System Architecture (HSA) is a computer processor architecture that
integrates central processing units and graphics processors on the same bus, with shared
memory and tasks. The GPU has great processing power and the overwhelming majority of
applications and computing tasks exploit the processing power offered by GPUs, therefore
the HSA aims to properly utilize the processing power offered by GPUs. The HSA has
developed from the HSA Foundation, whose founding members are AMD, ARM, MediaTek,
Qualcomm, Texas Instrument, Imagination and Samsung [1]. HSA is widely used in system-
on-chip devices, such as tablets, Smartphones and other mobile devices.

Scheduling is an increasingly important topic in HSA systems. Scheduling is the
process by which processes are given access to system resources (e.g. processor cycles,
communications bandwidth). The demand for fast computer systems, the execution of
multiple processes simultaneously (multitasking) and requirement for transmitting multiple
flows simultaneously (multiplexing) have as a result the need for an efficient scheduling
algorithm. The basic function of the scheduler is to determine which process will be run
when there are several runnable processes. Therefore the scheduler choices have an impact
on the utilization of system resources and other performance parameters. There exists a
number of CPU scheduling algorithms like First Come First Serve, Shortest Job First
Scheduling, Round Robin scheduling, Priority Scheduling etc, but due to a number of
disadvantages these are rarely used in real time operating systems except Round Robin

scheduling [2].

1.1 Research questions and methodology

The purpose of the present thesis is the study of the following: a) How a scheduling
algorithm for dispatching jobs to accelerator processors in a heterogeneous system can be
implemented. b) What the behavior of the algorithms on various conditions of executions is.
The structure of the remaining of this thesis is as follows. Firstly the objective of this work is
presented. Next heterogeneous architecture, the architecture of the GPU and the
programming environments of GPU are briefly presented. Afterwards the principles and
criteria of scheduling are analyzed. Sequentially a description of basic scheduling algorithms

is presented. Then the basic idea of our algorithm is analyzed and the way of

1

implementation is described. Next measurements based on specific scenarios are

presented. The last part includes the conclusions of the present work and future proposals.

2 Objective of the Study

The basic idea of the algorithm is as follows. In the context of a multiprogrammed
environment we assume we have N applications, a set Nq of queues with a fixed max weight
(weight_queue) that the system assigns to each queue. The weight of each queue
represents the maximum time quantum allocated to this queue for execution, or the
normalized maximum time quantum. Each application enqueues jobs in queues. The jobs
are dispatched to a hardware accelerator either single or multi-threaded (e.g. GPU). The
gueue contains packets with the job attributes, such as pointers to the kernel code and
data, estimated execution time, type, etc.

The centralized scheduler when deals with a queue with a higher weight
(weight_queue) compared to a queue with a less weight, must serve a number of packets in
proportion to the ratio of their weights. The algorithm cannot service packets with total
weight greater than the weight of the queue (weight_queue). Additionally the total serviced
weight of all queues should be less or equal than the maximum total weight of the
algorithm, which is equal to the sum of all queues weights. When the total maximum weight
of all queues weights has been achieved then a cycle is completed. Hence dequeuing
packets must be enqueued before the cycle starts. If the packets have been enqueued
during the new cycle, they will be served in the next cycles. Essentially, the algorithm
scheduling policy works in Round-Robin fashion and provides weighted fairness for variable-

length packets (i.e., execution time) maintained in multiple queues.

3 Heterogeneous architecture

The progress in semiconductor technology has brought evolving microprocessors
developed for a wide range of applications such as aerospace, power electronics, defense
systems, geosciences, bioinformatics, interactive digital media, cloud computing, etc. In
heterogeneous multi-core systems for specialized purposes, the cores are integrated into
the same chip specific processor/functional units and general-purpose cores [3].
Heterogeneous computing refers to systems that use more than one kind of processor.
Therefore, the opportunity to accelerate emergency applications by running critical tasks on
fast cores is given. This embodiment has advantages in areas such as performance, power
optimization. Especially in the last decade, multi-core processors are increasingly used
because of the high performance they provide, while they have reduced their energy
requirements.

A heterogeneous computer cluster is more effective than a homogeneous since
some types of processing units perform better than others in certain processing tasks.
Furthermore the closely tied hardware accelerator within a node can reduce communication
requirements by making use of locality data. Overall system performance can be improved
by allowing the heterogeneous cores to work collaboratively on different parts of an

application.

Therefore commercial operating systems have been improved to support the
parallelism offered by multi-core processors. Furthermore, the need for extensive battery
life in portable devices and high performance, has led to power/efficient performance and
ultra low power small cores (e.g. Intel’s Atom processor). Since available different types of
cores, architectural options when designing a platform are also more. The possibility of
developing heterogeneous architectures, combining large and small cores on the same die,
in order to provide a range of power / performance capacity is also given. In addition to the
large and small cores, on-die integration in specific areas accelerators for operating special
purpose, such as graphics and media processing has become widespread.

According to Kyriazis G [4], the essence of the HSA strategy is to create a single

unified programming platform providing a strong foundation for the development of

languages, frameworks, and applications that exploit parallelism. More especially, HSA's
objectives include:
* The use of the processing power offered by GPUs
e Removing the programming dam between CPU/GPU.
e Reduced CPU / GPU latency communication status.
* The opening of the programming platform to a wider range of applications by enabling
existing programming models.
* Create a base for registration of additional processing elements beyond the GPU and CPU.
An HSA application is run on a various platforms comprising both CPUs and
Intellectual Property (IPs) such GPUs. HSA permits the application to execute at the best
possible performance and power points on a certain platform, without dispensing flexibility.
Simultaneously, it improves programmability, portability and compatibility.
Figure 3-1 indicates a simple HSA platform. The HSA Accelerated Processing Unit
(APU) includes a GPU with multiple HSA compute units (H-CUs), a multicore CPU, and the
HSA memory management unit (HMMU). The above components are in communication

with coherent and non-coherent system memory.

HSA APU

System Memory

coherent

Figure 3-1 A simple HSA platform [4]

3.1 Types of heterogeneous architecture

For heterogeneous systems factors such as performance, power, flexibility and

programmability should be taken into account. According to Chitlur, N. et al [4], types of

heterogeneous architecture configuration can be described as follows:

Interconnect/ Interconnect/ Interconnect/
Memory Memory Memory
Core(s) IP(s) Big Small Core(s) Special IP(s)
Corels) Corel(s) Corels)

a. Core+IP Integration

b. Asymmetric Core

Integration

c. Asymmetric and
Specialization

Figure 3.1-1 : Heterogeneous Architectures Under Exploration [5]

Core+IP Integration[5]: This type of architecture (illustrated in Figure 1) integrates multiple

homogeneous cores with hardware accelerators (also known as intellectual property (IP)). In

this type of architecture, the IP block is low power but achieves high-performance process

for specific areas such as graphics, security, imaging, etc.

System on Chip

Exynos 5 Dual

Tegra 3 T30L

Teggra4T114

Tegra K1 T132

Texas Instument

OMAP4460

CPU

1.7 GHz dual-core ARM
Cortex-A15

1.2 GHz quad core (up to

1.3 GHz in single-core mode)

Up 1.9 GHZ quad core Cortex-
Al5

up to 2.5 GHZ dual core

Denver (64bit)

1.2-1.5 GHZ, dual core Cortex
-A9

GPU

ARM Mali-

T604 (quad-core)

12 core

72 cores

192 core

PowerVR SGX54

Table 3.1-1 Examples of Core+IP Integration [6]

Devices

SamsungChromebookXE303C1

2,[Google Nexus 10,

Lenovo IdeaPad Yoga 11, Acer

Iconia Tab A700, ZTE Era,

Tegra Note 7, Microsoft
Surface 2, HP SlateBook x2,

Toshiba AT10-LE-A
Google Project Tango tablet,

Samsung Galaxy Nexus, Archos

80 Turbo, Huawei Ascend D1

Asymmetric Core Integration[5]: This type of heterogeneous architecture is proposed by

ARM Holdings and combines a number of general purpose cores. The cores are asymmetric

in power consumption and performance. Therefore large and small cores are collaborating
to provide the power efficiency or performance when needed, with the probability of many
same large and small pairs on a chip. The cores could be of different generations, although
they are usually from the same ISA family.

Each pair (large and small cores) is considered as a virtual core. In real time only one
core is active and running at any time. Hence the large core is used when the system
requirements are high, whereas if the system requirements are low used the small core is
used. When request for virtual core is alternating between low and high, the incoming core
is enabled, the operation state is transferred, the outgoing core is closed down, and

processing continues on the new core. [6]

Cortex- Cortex- Cortex- Cortex- ';'rr'r‘u‘”bnc .
A15 A15 A15 A15 il i
Corlex- Cortex- Cortex- Cortex- I i
AT AT AT AT L owest
Power
Virtual Core 1 Virtual Core 2 Virtual Core 3 Virtual Core 4
4 A [4
1 | 1 |
[Linux Scheduler - 4 SMP cores]

Figure 3.1-2 CPU migration via the in-kernel switcher [6]

The most powerful model of small and large cores is heterogeneous multi-processing
(MP). This type allows the simultaneous operation of all the cores regardless of size. So
processes with large computational requirements or high priority are executed by large
cores. On the other hand, processes with less computational requirements or less priority

can be performed by the small cores. [6]

Cortex- Cortex- Cortex- Cortex- Cortex- Cortex- Cortex-
A15 A15 A15 A15 AT AT AT
} g } 4 t t 1

Linux Scheduler - 8 non-symmetric cores

Figure 3.1-3 heterogeneous multi-processing (MP)[6]

System on Chip

HiSilicon K3V3

HiSilicon Kirin
920

HiSilicon Kirin
930

Samsung Exynos
5 Octa

Samsung Exynos
5 Octa

Samsung Exynos
5 Octa

Samsung Exynos
5 Hexa

Samsung Exynos
5 Octa
Samsung Exynos
7 Octa

Samsung Exynos
7 Octa (7420
model)

Renesas Mobile
MP6530][

Allwinner A80
Octa

big cores

1.8 GHz dual-

core Cortex-A15
1.7-2.0 GHz Cortex-
A15

Cortex-A53 quad
core 2.0 GHz

1.6-1.8 GHzquad-
coreCortex-A15

1.8-2.0 GHz quad-
core Cortex-A15

2.1 GHz quad-core
Cortex-A15

1.7 GHz dual-core
Cortex-A15

1.8 GHz quad-core
Cortex-A15

1.9 GHz quad-
core Cortex-A57

2.1 GHz quad-core
Cortex-A57

2 GHz dual-core
Cortex-A15

Quad-core Cortex-
A15

LITTLE cores

1.2 GHz dual-
core Cortex-A7

1.3-1.6 GHz quad-core

Cortex-A7

1,5 Ghz quad core
Cortex-A53

1.2 GHz quad-core
Cortex-A7

1.3 GHz quad-core
Cortex-A7

1.5 GHz quad-core
Cortex-A7

1.3 GHz quad-core
Cortex-A7

1.3 GHz quad-core
Cortex-A7

1.3 GHz quad-core
Cortex-A53

1.5 GHz quad-core
Cortex-A53

1 GHz dual-core
Cortex-A7

Quad-core Cortex-A7

GPU

Mali-T658

Mali-T628MP4

Mali-T628 MP4

PowerVR
SGX544MP3

Mali-T628MP6

Mali-T628MP6

Mali-T624

Mali-T628MP6

Mali-T760MP6

Mali-T760MP8

PowerVR
SGX544

PowerVRG6230

Devices

Huawei
Honor 6

Huawei P8

Exynos 5-
basedSamsu
ng Galaxy S4,
ZTE Grand S
1]

Exynos 5-
basedSamsu
ng Galaxy
Note 3,
Samsung
Galaxy Tab
Pro, Galaxy
S5 SM-
G900H
Exynos 5-
basedSamsu
ng Galaxy S5-
G900, Odroid
-XU3,
Odroid-XU4
Samsung
Galaxy Note
3 Neo
Samsung
Galaxy Alpha
Samsung
Galaxy Note
4 (SM-
N910C)
Samsung
Galaxy

S6, Samsung
Galaxy S6
Edge

MediaTekMT659 2.2 GHz quad-core 1.7 GHz quad-core PowerVR G6200
5 Cortex-A17 Cortex-A7 (600 MHz)
MediaTek 2.0 GHz quad-core 1.5 GHz quad-core PowerVR G6200
MT6595M Cortex-A17 Cortex-A7 (450 MHz)
MediaTek 2.5 GHz quad-core 1.7 GHz quad-core PowerVR G6200
MT6595 Turbo Cortex-A17 Cortex-A7 (600 MHz)
QualcommSnapd 2.0 GHz dual-core Quad-core ARM Adreno 418 LG G4
ragon 808 Cortex-A57 Cortex-A53
(MSM8992)
Qualcomm 2.0 GHz quad-core Quad-core ARM Adreno 430 HTC One
Snapdragon 810 Cortex-A57 Cortex-A53 M9, LG G
(MSM8994) Flex
2, OnePlus 2

Nvidia Tegrad 1.9 GHz quad- 1 low power core Nvidia GeForce Nvidia
T40 core ARM Cortex- @ 72 core ShieldTegra

A15]+ Note 7
Nvidia Tegrad 1.2-1.8 GHz quad- 1 low power core Nvidia GPU
AP40 core 60 cores

Table 3.1-2 Examples of big-LITTLE heterogeneous multi-soc[6]

Asymmetry+Specialization[5]: The third type of configuration combines asymmetric cores,
special purpose cores and hardware accelerators. The main difference lies in the special

purpose cores which are used for special aims (hardware scheduling, management, etc).

3.2 GPU architecture

A number of the multi-cores architectures have developed to meet the needs for
processing power. GPU architecture is one of the most powerful. GPU architectures have
multiple intensive processors that are specialized for the execution SIMT (Single Instruction
Multiple Thread) operating activities. Until now, the performance of GPU architecture is at
least six times faster than the general purpose CPU architecture [7]. The computer scientists
were particularly interested in exploiting this computing power to quickly solve large
general purpose problems, known as General-Purpose computing on the GPU (GPGPU),
utilizing the potential of parallel programming. A platform called general-purpose
computing on graphics processing units (GPGPU) has emerged to optimize the performance
of GPU. GPGPU programs usually consist of two parts: kernel code and host code. Kernel

code is executed on multiple GPU cores with the configuration. The host code is executed in
9

CPU and includes mainly the procedure for preparing the GPU device, data transfer between
the GPU and the host, as well as the launching of kernels with configuration [8].

Modern GPUs consist of hundreds of processing units operating at low to medium
frequency, designed for throughput -oriented latency insensitive workload. To hide global
memory latency, GPUs contain small or moderate sized on-chip caches, and make wide use
of hardware multithreading, performing tens of thousands of threads simultaneously
throughout the pool of processing units. The GPU processing units are usually organized in
single-instruction multiple-data (SIMD) clusters controlled by a single instruction decoder,
with access to fast on-chip caches and shared memories. The SIMD clusters execute
instructions in lock-step and branch divergence treated with the implementation of both
paths of the branch and concealing results from inactive processing units as necessary. The
use of SIMD architecture and in-order execution of instructions permits GPUs to contain a
greater number of arithmetic units in the same area as compared to conventional CPUs [9].

Due to the high computational requirement of graphics GPUs achieved single-
precision floating point arithmetic rates approaching 2 trillions of instructions per second.
GPUs are designed with global memory systems capable of bandwidths approaching 200
GB/sec. GPU memory is organized into multiple banks. Maximum performance is achieved
when the accesses are aligned with the appropriate address boundaries. When a memory
access is not aligned with an appropriate address boundary and in consecutive sequence,
the memory access must be divided into multiple transactions resulting in a significant
decrease of the effective bandwidth and increasing latency [9].

Even though the GPU are powerful computing modules in their own right, their
management is done by host CPU. The GPUs are usually connected with the host through
PCI-Express bus and in most cases they have their own independent memory. To achieve
data exchange with GPU, the host CPU performs DMA transfers between GPU memory
systems and the host, and in some cases, allow their on-board memory to be mapped in the

host's address space, therefore data is read or written only once during kernel execution [9].

3.2.1 CUDA-OPEN CL
For programming GPU’s, various programming environments have been developed.

GPUs programming models initially consisted of specialized high-level programming

10

languages, such as HLSL, GLSL, and Cg [10]. In particular, after 2006, where NVIDIA opened
its CUDA (Compute Unified Device Architecture) architecture, it eliminates the need to use
the graphics application programming interfaces (API) for calculating applications, allowing
utilization of GPU computing to more widespread use. Additionally, the Advanced Parallel
Processing (APP) which enables API’'s GPUs, working together with the CPU, is combined
with the ability of programmers to develop GPU computing application without mastering
graphics terms. At the same time it enabled the acceleration of the execution of applications
and makes the coding of large programs easier.

The two modern programming GPU interfaces are CUDA and Open Computing
Language (OpenCL). OpenCL, a portable language for GPU, is an open standard maintained

by the non-profit technology consortium Khronos Group. CUDA is a C language framework.

It is specifically for NVIDIA GPUs with set of language extensions that works only on
NVIDIA’s GPUs, while OpenCL is an open standard that can be used to program central
processing units (CPUs), graphics processing units (GPUs), digital signal processors (DSPs),
field-programmable gate arrays (FPGAs) and other processors.

CUDA and Open/CL are quite similar to each other; they have similar programming
models, execution models, memory models and platform models but different
programming interfaces. For a programmer, the computing system consists of a host (a
typical CPU), and one or more devices providing parallel processors and a large number of
arithmetic execution units. Furthermore their built-in functions and syntax for various
keywords are similar. Thus it is relatively easy to translate a CUDA program in an Open/CL

program [10, 11].

11

4 Background on scheduling algorithms

as mentioned by Srinivasan A. [12]

Theorem: Dertouzos and Mok say: “No scheduling algorithm is optimal for
scheduling hard real-time aperiodic tasks on two or more processors if all

release times, deadlines, and execution requirements are not known a priori”

4.1 General principles of Scheduling Algorithms

In CPU scheduling we accept the following assumptions. There are a number of

runnable processes waiting for the CPU. Waiting is performed in an “area” called job pool.

Also all processes compete for resources and independent of each other. The main job of

the scheduler is to distribute the CPU resources fairly and in a way that optimizes certain

performance criteria

Long term Time out
schedulling
H Short term
! Ready queue scheduling

ncoming sobs—>[| | [[T [+ =TT 11T}

Release

Tt

Medium term
scheduling

Read

, suspend g

ueue

]

Medium term

Blocked, suspend queue

scheduling

T,

Event
occurs

Blocked queue

Event wait
HEEEREN, —

Figure 4.1-1 Queuing diagram for scheduling [2]

From the ready queue, the short term scheduler, known as CPU scheduler, select a

process to be executed and allocates the CPU. The scope of medium term scheduler is to

remove processes from memory and to reduce the degree of multiprogramming results in

12

swap system. Swap is performed by a dispatcher. A dispatcher is the unit that gives control
of the CPU to the process.

Especially in real-time systems, where there are time restrictions in the calculations,
the CPU scheduler performs an important role. In such a system the processes has to be
completed within specified time restrictions. Most real-time systems can be applied in
unpredictable environments that can handle unknown and changing tasks. Therefore a
dynamic task scheduling is necessary. Additional software and system hardware must adapt
to unforeseen compositions.

There are two main types of real-time systems [13]: Hard Real-Time System, and
Firm or Soft Real-Time System. In Hard Real-Time System specified deadlines must be
complied. Otherwise the result could be disastrous. Soft Real-Time System has higher
tolerance. Such systems where performance is limited, but where are no catastrophic
consequences in case of failure to meet the time constraints, are called soft real time
systems. In real-time systems each task must be completed before its deadline. In soft real-
time system the simple Round Robin algorithm has as a result low throughput and as a
consequence more number of context switches, longer response and waiting times. On the
other hand, if such a system has a large CPU burst, this can lead to starvation problem.
Priority scheduling may be a better choice in real-time systems, but still there is the problem

of starvation, due to a low priority processes will forced to wait.

4.2 Scheduling Criteria
The basic Scheduling Criteria are [13]:

e CPU Utilization - how busy the CPU is.

e (Context Switch: It is the process of storing and retrieving the state of a non-
integrated process, so that the process can be executed later, starting from the last
saved context. It usually requires computing power, leads to memory waste and
time, thus increasing the overhead of scheduler.

e Throughput — depends on the number of processes that are completed per unit time

Throughput and context switching and are inversely proportional.

13

e Turnaround Time- How long it takes to execute a process. Turnaround time derived
from the sum of the waiting times to get into memory, waiting time in the ready
gueue, the execution time for the CPU and time for the necessary I/0.

e Waiting Time- It is the sum of periods spent in ready queue and it is directly
dependent on the scheduling algorithm.

e Response Time-. How long it takes until the first response after a process request.

For a scheduling algorithm to be optimally it must achieve maximum CPU utilization,
maximum context switches and throughput, but minimum turnaround time, minimum

waiting time and response time.

4.3 General Scheduling algorithms
Scheduling algorithms can be divided to static and dynamic algorithms. Static

algorithms have fixed priorities assigned to classes and always prefer one class over

another.

4.3.1 First Come First Served (FCFS)

An example of a static algorithm is First Come First Served (FCFS) algorithm. FCFS is
the oldest and simplest scheduling algorithm. FCFS can be implemented using a First Come
First Served (FIFO) queue. This implementation is simple with minimal overhead on CPU.
FIFO has only one queue, and the packet that arrived first also gets sent out first. Packets
are sent in the order in which they arrive without hierarchy. This can be done either by a
linked list or a ring buffer, or a hash table indexed by the values of packet arrival time. The
latter method is used in many devices based on specially designed integrated circuits, while
the two former methods are more common in cores operating systems like Linux or BSD.

FIFO is a natural choice where queues do not require any hierarchy.

—> —>

Figure 4.3.1-1 First Come First

Main Characteristics:
e There is no prioritization which means that each process may eventually be

completed, therefore, no starvation.

14

The process with the longer burst time can monopolize the CPU, even if the burst
time of another process is very small. Therefore, yield is low. [14]

The algorithm is seldom chosen since the process takes all resources until
completion.

Convoy effect [15] is a crucial issue. It occurs when more than one processes share
the same resources. If a long process has reserved resources for a very long time, the
new short processes that are scheduled cannot be served. As a result they can cause

additional delays and significantly increase the system load.

4.3.2 Shortest Job First (SJB) [14]

The process assigned to the CPU has an execution time at least equal to the burst

time. The scheduler sorts the processes according to the execution time. Processes with a

short time burst are positioned in the starting of the queue and processes with longer burst

time at the end of the queue. This algorithm requires an assessment of the integration time

required for each process [14]. The design of this algorithm aims at maximum efficiency in

most scenarios.

The main operating mode of the algorithm is as follows. The process having the

shorter burst is allocated in CPU. If two processes have the same burst time, allocated first

process came first according to the FCFS algorithm.

Main Characteristics:

We must have knowledge of the length of the next CPU request. This is a problem
with the SJF algorithm.

The algorithm SIB reduced the average waiting time because it first served small
process and then the larger processes.

Although the average waiting time is reduced, it may adversely affect the processes
with a long burst. In extreme cases, they will never serve the processes with large
burst time, which is a major issue of this algorithm.

Long running jobs may starve, low supply of short jobs to CPU.

SJF is optimal in waiting time, by achieving minimum average waiting time.

15

4.3.3 Priority scheduling
Priority scheduling algorithms [15] is a basic classful scheduling algorithm in which
each process has a value that represents the importance of task in the system. This value
defines the priority. In the process with the highest priority, the resources are available for
its completion. It consists of multiple classes with static priority [16]. It can be implemented
either by each class having its own queue, ordinarily FIFO, either by a single sorted queue in

with the higher priority tasks are at the front and the low priority at the back of the queue.

| | | |1— Low priority High priority

_,I
— [0 >
|

Figure 4.3.3-1 Priority queuing

Higher priority queue must be empty before selecting a task from a lower priority.
This is the cause of starvation that the algorithm may suffer.

There are two techniques of priority scheduling algorithms, dynamic or static priority
[17]. In dynamic algorithms, priority changes during execution, it either decreases or
increases according to specific mechanisms.
Figure 4.3.3-2 shows a job with static priority (blue line), which has priority set to 250, and a

task the priority of which decreases with time (red line).

300
250 -
200 -
Fy
5 150
a
100
50
0
1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00
Time
= Static priority job
Dynamic priority job

Figure 4.3.3-2 Static and dynamic priority

16

In static priority, the priority of a process never changes. It is defined at the start and
remains the same until its completion. This kind of algorithms can suffer of job starvation.
Whenever a process is ready for execution but there are no resources available, the process
must wait. If, however, processes with higher priority arrive continuously, then the process
which was waiting will never be served. This case is known as starvation [17].

One way of avoiding starvation is to determine the number of times that a process
can be overcome by higher priority tasks. Another technique is called aging during which the
priority of a process increases over time. At some point the process will succeed is getting
the necessary resources. The worst is as the process with the highest priority to come up so
it must be executed first. Nevertheless aging technique introduces computing overhead
because of the calculation of new priorities. Another issue is when the appropriate
determination of the time aging will take place. If this time is too short, then low priority
tasks will turn into high priority tasks very quickly, thus loading to FCFS algorithm. On the
other hand if the aging time is too long, maybe the technique will become partially

ineffective.

4.3.4 Multilevel queue scheduling

Highest priority
—> System processes —>
—> Interactive processes —>
— > Interactive editing processes - »
— Batch processes >
—_— User processes 5
Lowest priority

Figure 4.3.4-1 Multilevel queuing

The multilevel queue (MLQ) algorithm is based on the use of multiple queues. Each
qgueue has different weight and the tasks are allocated to queues according to their

importance. There is a queue for each category. Also for each queue a different algorithm

17

that will find the most important job of the queue can be selected. When resources are
available the most important job is chosen from the queue with the highest priority to. If the
gueue is empty then the next queue is examined. If a task is found then resources are
allocated and removed from the queue.
Main Characteristics:[15]

e Jobs cannot change queue. Therefore the right choice of queue is important for best

results.
e Need to determine the number of queues.
e Determine the scheduling algorithm of each queue.

e The way by which it is decided which task will be placed in which queue.

4.3.5 Multilevel feedback queue scheduling

Multilevel feedback queue (MLFQ) [15] scheduling algorithms is an extension of MLQ
algorithms. The main difference lies in the fact that the job can move from one queue to
another queue. After a period of time quanta, the priority of process decreases and the
priority queue changes. Also if a process is waiting in a queue too long this may increase the
priority, and eventually it is transferred to another line with an increased priority.
Nevertheless the main difficulty in applying the algorithm is MLFQ based on its complexity

and because of usually introduced higher overhead.

—> quantum=8 »
—>

> quantum=16 >
—»

> FCFS >

Figure 4.3.5-1 Multilevel feedback queuing

The problem of starvation is solved easily since it can change a job queue. Using
parameters such as history and runtime information jobs can be distinguished at runtime
according to their behavior. Problems with MLFQ algorithms can arise if a job changes

behavior over time and the scheduler does not realize this change. In these cases the system
18

performance typically declines. Generally MLFQ algorithms achieve better results than other
scheduling algorithms. However, they introduce overhead computational load. The
implementation of Linux scheduler is based on MLFQ algorithm.
Main Characteristics

e the number of queues

e scheduling algorithms for each queue

e method used to determine when to upgrade a process

e method used to determine when to demote a process

4.3.6 Round Robin

The algorithm Round Robin (RR) [2, 14] assigns to each process a small unit of time,
the time quantum. The schedule goes around this queue, allocating the CPU to each process
for a specified time quantum. The new procedures are added to the end of the tail.

The Round Robin algorithm works as follows. At first, selected time is assigned to
each process. Then the time is allocated to each process according to the FCFS algorithm. If
the burst time is less than the quantum, then the carrying out of the process must be
terminated. Otherwise the process is executed for as much time as quanta, and returns to

the end of the queue waiting for the next cycle.

process time = 10 quantum context switches
12 0
0 10
6 1
0 6 10
1 9
01 2 3 4 5 6 7 8 9 10

Figure 4.3.6-1 Context switches in Round Robin

Main Characteristics:

e The basic RR has large waiting time and large response time
19

e Therefore it provides less throughput.

e Can lead to reduced effectiveness of CPU, because of many context switches too
short time quanta is selected.

e On the other hand, if the time quantum is too large, then the algorithm
approximates the FCFS algorithm.

e Generally it achieves, higher average turnaround time than SJF, but better response.

4.3.7 Weighted Round Robin
Weighted Round Robin (WRR) is a scheduling algorithm with the main use in ATM
networks using fixed size packets. It was first proposed by M. Katevenis, S. Sidiropoulos and
C. Courcoubetis in 1991[18]. The basic idea is that a weight is assigned in each flow. In every
cycle of service, the number of packets served is proportional to the weight defined for each
flow. The job will receive w; consecutive time slices in each round, and the duration of a
round is the sum of all w;.
Main Characteristics
e Equivalent to regular round robin if all weights are equal to 1.
e Simple to implement, since it doesn’t require a sorted priority queue.
e Offers throughput guarantees - Each job makes a certain amount of progress each
round.
e By giving each job a fixed fraction of the processor time, a round robin scheduler

may delay the completion of every job.

4.3.8 Deficit Round Robin

Deficit Round Robin (DRR) is a queue scheduling algorithm based on round robin that
is firstly applied to routing packets. It was proposed by M. Shreedhar and G. Varghese in
1995 as a fair and efficient, with O(1) complexity algorithm[19]. Patrick McHardy
implemented DRR for Linux kernel

The main idea of DRR algorithm is as follow. There are queues of packets with
specific flow for each queue. A quantum of service has been assigned to each queue and
round robin technique is used to service the queues. The algorithm checks all the full tails in
a sequence. If a non empty queue is found its deficit counter is incremented by its quantum
value. The value of the deficit counter is a maximal amount of bytes that can be send at

20

each cycle. If the size of first packet of the queue is less than the deficit counter value, the
packet can be sent and then the value of the deficit counter decreases by the packet size.
Then, the size of the next packet is compared to the deficit counter value, etc. If the size of
the first packet of the queue is greater than the deficit counter value, or the queue is empty,
the scheduler will skip to the next queue; and the value of the deficit counter increases by
the quantum value. If the queue is empty the deficit counter is set to zero. If a deficit
counter becomes less or equal to zero then it increases by the quantum value.
Main Characteristics:

e The network administrator chooses weights of queues.

e Regardless of the size of each packet, it provides a minimum rate to each flow.

e If the quantum Q is larger than the maximum size of packet of each flow, the

complexity of DRR is O(1).

4.4 Heterogeneous scheduled techniques
By default, GPU kernels executed serially, a kernel at a time. But the latest CUDA and
Nvidia GPU architectures can perform multiple different kernels if resources are available.
However the GPU kernels executes sequentially, if resources are insufficient. Sequential
execution kernel could provide enough performance for most of the general-purpose
computing. Nevertheless, in real-time systems, sequential execution can cause problems,
because there is the potential for priority inversion. To resolve this problem numerous

scheduled techniques have been proposed.

4.5 Heterogeneous Scheduling Categories
The main purpose of each scheduling algorithm is to assign a task to a suitable
processor so that total execution time is minimized. However, to find a schedule for a
heterogeneous parallel architecture must take into consideration a number of factors such
as: different processing elements, processes may not be operable by all processors; the run
time of a process may be different depending on processing elements and the
communication time may vary [20].

Task scheduling on a heterogeneous system can be classified into several categories.

21

4.5.1 Static and dynamic Schedulers
One category is static and another one dynamic.

e |n static, task-to-core mapping is done only once at the beginning of the application
or at compile time offline. This model can be represented by dependency graph in
which tasks in the critical path determine the total duration of application. This
enables the application to accelerate by executing critical tasks in fast cores. Hence
the schedule remains the same throughout execution of the application. Moreover
all information about the tasks, such as the cost of execution and communication
for each task and relationship with other tasks is known a priori [21].

Static scheduling algorithms are classified into two categories, Heuristic-
based and Guided Random Search-based algorithms. Heuristic-based algorithms
often provide good solutions with polynomial time complexity. Guided algorithms
Random Search-based also give approximate solutions [21].

e In dynamic scheduling, progress monitoring of works and migration are used to
ensure a certain level of performance applications. Information about the tasks, as
the cost of execution and communication cost for every task and the relationship
with other tasks is not known beforehand. So decisions are taken at runtime [21].
The dynamic scheduling enables automatic synchronization and scheduling by the
runtime system such us OmpSs [22]. This model maintains a directed acyclic graph
(DAG) with the current state of the process, and when fulfilling the requirements of
a process it becomes ready to be scheduled to an available core. Although the
dynamic programming is likely to achieve better application performance than the
static scheduling, yet it can be better in small multi -core systems and not in large

multi-core systems [20].

4.5.2 Clustering, Listing, Duplication-based and Guided-random schedulers
Moreover schedulers for heterogeneous systems can be divided into four types of
schedulers: clustering, listing, duplication-based, and guided-random schedulers [24, 25].
Clustering, listing and duplication-based algorithms belong to Heuristic-based class

algorithm [21].

22

Clustering schedulers comprise clusters and each cluster must be running on the
same processor. Clustering heuristics are mainly proposed for homogeneous
systems and they seem difficult to use in for heterogeneous systems. At the stage
of clustering, the algorithm assumes that there are an infinite number of available
processors. If the number of clusters is larger than the number of available cores,
then it is necessary to merge the clusters so as to be as many as the available
cores. Such type is the Levelized Min Time algorithm. With this method are
organized clusters of tasks that can be performed in parallel depending on their
level. Assuming a graph, sibling nodes in a graph have the same level. The
priorities of tasks defined on a cluster according to the time of execution. Tasks
with the largest execution time have the highest priority. The assignment task to
the processor is in descending order of priority [23].

Listing schedulers have two phases. In the first phase, every task is given priority
based on the policy defined in each algorithm. In the second phase, according to
their priorities, tasks are assigned to processors. These kinds produce the most
efficient schedules, without compromising the makespan and with a quadratic
complexity in relation to the number of tasks [21, 23].

The aim of duplication-based schedulers is the limitation of communication
between processes. This is achieved by duplication of tasks. If a task has a lot of
successors, it is doubled and running on multiple cores before their successors, so
all successor tasks get the results from their predecessors with lower
communication costs. This type of algorithm has two disadvantages, a higher
complexity (cubic, in relation to the number of tasks) and the duplication of the
execution of tasks. Therefore they require more processor power [21, 23].

In Guided-random schedulers, the scheduling influenced by policies applied to
other sciences. For example, they are based on genetic algorithms or chemical
reaction algorithms [23]. Their results can be improved if more repetitions are
performed, which therefore makes it more expensive than the based Heuristic

approach [21].

23

4.6 Basic Heterogeneous Scheduling Algorithms
4.6.1 HEFT

Topcuoglu et al [25] presents Heterogeneous Earliest-Finish-Time (HEFT) algorithm.
It is one of the best, more acceptable and well documented list-based heuristic scheduling
algorithm. HEFT is among the best schedule in compared between 20 scheduling heuristics
algorithms as mention Canon et al [26]. At terms of complexity has a O(n’p) complexity,
where n is the number of tasks and p the processors. The HEFT algorithm consists of two
stages. First it assigns a priority to each task and all the tasks sorted in decreasing order. The
tasks are ranked upwards and downwards to configure scheduling priorities. The maximum
sum of computation and communication cost between the task and an exit node in the
graph from that task is the upward rank of a task. The maximum sum of computation and
communication cost between an entry node in the graph into that task is the downward
rank. Afterwards, the task with the highest priority is assigned to the processor, which
completes the execution of the task in the shortest possible time. Thus, the total execution

time is minimized. There have been proposed various amendments of the above algorithm.

HEFT ALGORITMH

: Compute rank, for all nodes

: ReadyTask € {Entry tasks}

: While ReadyTask is not empty

: Select the task n with highest priority

Assign the task n to the processor p that minimizes the
earliest finish time (EFT) value of n

: Update earliest start time (EST) values and ReadyTask
: End while

N

4.6.2 CPOP
Critical Path on a Processor (CPOP) heuristic algorithm is proposed by Topcuoglu et
al [25]. It also sorted the tasks in decreasing order. The tasks are ordered by the node
priority arising to the addition of their upward rank and downward order. The task with the
maximum sum belongs to the critical path. On each step these tasks are assigned to the
critical-path-processor (CPP), which is usually the fastest processor that minimizes the
length of the critical path, otherwise it is running on the processor that minimizes the EFT

[23, 27]. The complexity is also as the HEFT, O(n’p).

24

CPOP ALGORITHM

1: Compute rank,and rank, for all nodes
2: ReadyTask < {Entry tasks}

3: While ReadyTask is not empty

4: Select the task n with highest priority

5: If nis out the critical processor

6: Assign n to the CPP

7: Else

8 Assign the task n to the processor P that

minimizes the EFT value of n
9: Update EST values and ReadyTask
10: End while

Both algorithms operate statically and require prior knowledge of computation and

communication costs of each task for each processor type.

25

5. Implementation

The objective of this work is the implementation of a scheduling algorithm for

dispatching jobs to accelerator processors in a heterogeneous system.

5.1 Basic Idea

The basic idea of the algorithm is as follows. In the context of a multiprogrammed
environment we assume we have N applications, a set Nq of queues with a fixed max weight
that the system assigns to each queue. The weight of each queue represents the maximum
time quantum allocated to this queue for execution, or the normalized maximum time
guantum. Each application enqueues jobs in queues. The jobs are dispatched to a hardware
accelerator either single or multi-threaded (e.g. GPU). Initially, we assume a single
accelerator for servicing the works. The queue contains packets with the job attributes, such
as pointers to the kernel code and data, estimated execution time, type, etc.

Special mention should be made to packet weight (Weight,) and to the field order.
The Weight) of each packet is different and independent from the weights of the other
packets. The objective of order is to discern the enqueue order of a packet. Packets
enqueued during the same cycle have the same order. If a packet has order value greater or
equal than the order value of current cycle then the packet is ignored. This way the
scheduler serves only the packets that have been enqueued when the cycle started. Packets
enqueuing after the cycle is started will serve in the next cycle.

The centralized scheduler when deals with a queue with a higher weight
(weight_queue) compared to a queue with a lower weight, must serve a number of packets
in proportion to the ratio of their weights. Essentially, the algorithm scheduling policy works
in Round-Robin fashion and provides weighted fairness for variable-length packets (i.e.,

execution time) maintained in multiple queues.

5.2 Algorithm Description
Each queue is designed as a ring buffer, with two pointers Front and Rear. In each
gueue fixed-size packets can be enqueued that contain the job weight (Weight) by
amending the Rear pointer. A dequeue operation causes the Front pointer to decrease. If
the Front pointer is equal to Rear then the queue is empty. If Front pointer plus one is equal

to Rear pointer the queue is full. The above implementation is necessary due to the
26

limitation of physical memory. In our simulation model the queues are implemented as
classical queues with head and tail pointers. In both cases the packets inside a queue follow

a FIFO ordering.

Front

FIFO TotalWeigth= weight_queue; +...+ weight_queueyq

Queue 1
weight_queue;

Rear

Accelerator

Round Robin Packet from Queue;

weight_queue; >.> weight_queueyq

Front

FIFO
Queue N
weight_queuenq

Rear

Figure 5.2-1 Schematic algorithm description

Every queue i (I<=i<=Ng) has a maximum weight of dequeued packets
(Weight_Queue).The Weight_Queue; is initially defined before the scheduler starts. Since,

the sum of all weights (Weight_Queue)) determines the total weight (Tota/lWeight).

TotalWeight= Weight_Queue) + ...+ Weight_Queueq (1)

Additionally there is a variable current_order which keeps the current order, which
in turn is the same as the number of cycle. Another variable, the orderpscket m) , keeps the
order when the packet is enqueued.

Each time it is possible to export packets as long as the following conditions are met
with: a) the sum of total popped weight packets from all queues should not be exceeded by
a maximum fixed threshold (TotalWeight) that was initially determined, b) the sum of the
weights of the packets of each queue must be lower or equal than the weight of that queue

(Weight_Queue), and c) the orderpacket m) must be less than current_order.

27

Also there is a variable or each queue i (I1<=i<=Ng) that keeps the current total
weight (CurrentTotalWeight;)) of dequeued packets. CurrentTotalWeight,; is initially set to
zero. If a packet degeue from a queue i, then the CurrentTotalWeight,; is increased by the

weight of packet.

CurrentTotalWeight) = CurrentTotalWeight + Weightm,) (2)

Before being dequeued a packet, the sum of the current total weight of dequeued

packets of the queue i plus the weight of the packet to be exported is calculated.
CurrentTotalWeight;+ Weight) (3)

If equation (3) is less than or equal to Weight_Queue;, the packet can be dequeued,
while increasing the current total weight of dequeued packets by the weight of dequeued
packet.

CurrentTotalWeight;) = CurrentTotalWeight; + Weight, (4)
CurrentTotalWeight; + Weight (5)
If the equation (5) is more than Weight_Queue of queue i, then examine the next

queue.

If the queue is empty then set the CurrentTotalWeight; equals Weight_Queue

(equation 6)

CurrentTotalWeight;) = Weight_Queue; (6)

Finally there is a global variable, CurrentTotalWeight, which increases by the

CurrentTotalWeight (equation 7)

CurrentTotalWeight= CurrentTotalWeight+ CurrentTotalWeight; (7)

28

The necessary and sufficient conditions to dequeue one job are for the
CurrentTotalWeight to be less than the Tota/Weight and for the CurrentTotalWeight to be
less than the Weight_Queue. Furthermore the order packet m) must be less than the current
order. The queue will become ineligible to serve a)if the CurrentTotalWeight is greater or
equal to the Total/Weight or b) if the CurrentTotalWeight; is greater or equal to the
Weight_Queue; or c) the order packet m) is greater than or equal to current order.

If the CurrentTotalWeight is greater or equal to the TotalWeight, it indicates that all
packets permitted to be dequeued have indeed been dequeued. Also if the
CurrentTotalWeight, is greater or equal to the Weight_Queue this denotes that all packets
permitted to be dequeued from queue j have been actually dequeued.

In each cycle packets with maximum total weight equal to Tota/lWeight can be
dequeued. If the CurrentTotalWeight value is the highest possible and simultaneously less
than or equal to TotalWeight then a cycle is completed. After this cycle, the procedure starts
over again by setting the CurrentTotalWeight and CurrentTotalWeight;) for each queue i to
zero. Thus, a new cycle begins for the packets that arrived during the previous cycle; the
total system weight is still equal to TotalWeight. In this new cycle the scheduler examines
the next eligible queue starting from the last queue plus one that was served in the previous
cycle. This is done to provide fairness, since we avoid the bottom queues from starvation.
Otherwise, with the start of every new cycle the first queue will be examined, consequently

delaying the servicing of lower queues.

Algorithm wsov. G TTTTTommToTToTTmToTTmTTIoToT !
Input: A set of Nq Queues, Weight_Queue,, TotalWeight,
parameter queue number j to start from this queue.

i e -1: call again Algorithm...
Output: return a eligible queue number i, E

while not complete the

requisite total _weight
or control value (-1 or -2)

weight

1:For each cycledo bTooommmooomommooooooooooooeo
2: If Queues are empty then return (-2);
3: While (i< Nq) and (packet not found) do
4: If ((queue i is empty) or (order packet m) >=current order)) and

(CurrentTotalWeight < Weight_Queue) then
5: update CurrentTotalWeigth, CurrentTotalWeight),
6: examine the next queue;
7: else if (queue i is not empty) and (CurrentTotalWeight ;) +

29

10:

11:
12:
13:
14:
15:
16:
17:

18
19

20:
21:
22:
23:
24.
25:
26:

27

Weight packet)<=Weight_Queuey)
and (CurrentTotalWeight < TotalWeight) and (order packet mj<current order)
then
found a packet in queue i;
update CurrentTotalWeight); CurrentTotalWeight,
else if (queue i is not empty) and (CurrentTotalWeight ;) +
Weight packety> Weight_Queue)
and (CurrentTotalWeight < TotalWeight) and (order packet m) <current order)
then
update CurrentTotalWeight, CurrentTotalWeight),
examine the next queue;
else if (CurrentTotalWeight = TotalWeight) then
return(-2);
else
examine the next queue;
endif
: End while.
: If found a packet then
If (i<Ng) then
will examine the next queue (g=i+1) on next cycle;
else examine the queue 1 (g=1) on next cycle;
endif
return(i);
endif
if (i== Ng) then return (-1);
: End of Cycle;

30

6 Measurements

In order to study the behavior of the algorithm the following scenarios are
implemented. These scenarios are indicative, with the purpose to demonstrate the behavior
of algorithm. The algorithm can handle any number of queues but in the proof-concept

examples, 8 queues have been assumed.

6.1 Scenario 1. As many packets as can be served in a cycle, average packet
weight 100, minimum queue weight 300, maximum queue weight 1000.

The scenario is based on the following assumptions. Suppose we have 8 queues.
Queue 0 (QO) has the largest weight and queue 7 (Q7) the minimum weight. The weights of
the queues have been assigned as follows: Q0:1000, Q1:900, Q2:800, Q3:700, Q4:600,
Q5:500, Q6:400 and Q7:300. This means that QO can serve packets with total weight at most
1000, Q1 at most 900, and so on. The maximum total weight that can service in a cycle is the
sum of the weights of all queues, which is 5200.

The weights of the packets that are engeued into queues are provided by the
Poisson distribution. The weight represents the execute time quanta of each packet. In our
example the average weights of packets are 100. In each queue are engeued as many
packets as can be served in a cycle. For example in QO, packets with maximum total weight
equal to 1000 are engeued, in Q1 packets with maximum total weight equal to 900 are
engeued, and so on. So Q0 has weight 1000 and can accept maximum 10 jobs of 100 each.
The packets are engeued just before the new cycle starts. This means that all queues are
empty when the new packets are inserted. Moreover, we assume in all scenarios an
additional delay of 2 time quanta of each job, because of reading, writing and transfer delay.

Table 6.1-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10026 total serviced packets.

Queue Mean Latency Mean Weight Max Latency Number of Jobs
0 3259.02238046796 | 100.021363173957 | 5032 1966
1 2645.64325842697 | 99.5921348314607 | 4926 1780
2 2485.47351627313 | 99.6119974473516 | 4723 1567
3 2293.92398523985 | 99.9372693726937 | 4437 1355
4 2074.53403141361 | 99.8368237347295 | 4095 1146

31

5 1815.50858369099 99.7907725321888 3607 932

6 1570.29769959405 | 99.2936400541272 3041 739

7 1255.66279069767 99.1027131782946 2353 516

Table 6.1-1 Results for as many packets as can be served in a cycle, average packet weight 100,
min queue weight 300max queue weight 1000.

3500 -|
3000

L

a 2500

t

e 2000

n

C 1500

Y
1000

500
i =u] 100 150 200 2L

Number of cycles

Figure 6.1-1 Latency for as many packets as can be served in a cycle average packet weight 100,
min queue weight 300, max queue weight 1000.

From the above table we can understand that in such case, the queue with minimum
weight (Q7. 300) enjoys the minimum latency. But Q7 serviced the fewest jobs. So if we
desired to serve a small number of jobs with the minimum latency we would choose Q7.

If we have many jobs to service, then choose Q0. QO services the maximum jobs but
simultaneously it has the maximum Mean Latency. Otherwise if we choose Q7 then the jobs
will have to wait for more service cycles to complete.

In total we have 208 service cycles. In theses cycles we submit almost 9.45 jobs per
service cycle to QO, and 2.48 jobs per cycle to Q7 and 10026 total serviced jobs are

submitted

32

6.2 Scenario 2. As many packets as can be served in a cycle, average packet
weight 50, minimum queue weight 300, maximum queue weight 1000.

The weight of each queue, the total weight, the mode and the time of enqueing
packets are the same as previous. The only difference is the weight of each packet. The
weight is given by Poisson distribution; with distributed value 50, rather 100 in the previous
scenario. So QO has weight 1000 and can accept maximum 20 jobs of 50 each, rather 10 jobs
in scenariol, and so on.

Table 6.2-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10001 total serviced packets.

Queue Mean Latency Mean Weight Max Latency Number of Jobs
0 3397.7465648855 49.5648854961832 | 5263 1965

1 2954.39132915003 | 49.9566457501426 | 5131 1753

2 2750.22422680412 | 50.1024484536082 | 4949 1552

3 2523.56995581738 | 49.8063328424153 | 4736 1358

4 2223.09745390694 | 50.233538191396 4341 1139

5 1950.68376963351 | 49.9151832460733 | 3900 955

6 1628.28853754941 | 49.3333333333333 | 3404 759

7 1248.73211009174 | 50.0605504587156 | 2510 545

Table 6.2-1 Results for as many packets as can be served in a cycle, average packet weight 50, min queue weight 300,
max queue weight 1000.

As in scenario 1, the queue with minimum weight (Q7. 300) enjoys the minimum
latency. But Q7 serviced the fewest jobs. In addition QO services the maximum jobs but

simultaneously it has the maximum Mean Latency.

33

< 0O 53 0O o

W ﬂ@iﬁﬁ&;«#m

10 20 30 40 50 60 70 80 90 100

Number of cycles

Figure 6.2-1 Latency for as many packets as can be served in a cycle average
packet weight 50, min queue weight 300, max queue weight 1000.

The main anticipated difference between two scenarios is the service cycles. In
scenario 1, 208 cycles are needed to service 10026 jobs. In scenario 2, 100 cycles are needed
to service 10001 jobs. Hence, in about 200 cycles (as scenario 1) approximately 20000 jobs

will be served, since we have smaller jobs.

6.3 Scenario 3. As many packets as can be served in a cycle, average packet
weight 100, minimum queue weight 650, maximum queue weight 1000.

The weights of the queues have been assigned as follows: Q0:1000, Q1:950, Q2:900,
Q3:850, Q4:800, Q5:750, Q6:700 and Q7:650. This means that Q0 can serve packets with
total weight at most 1000, Q1 at most 950, and so on. The maximum total weight that can
be serviced in a cycle is the sum of the weights of all queues, which is 6600. This implies that
more jobs can served in a cycle, compared with the previous scenarios where the total
weight was 5200.

The weights of the packets that are engeued into queues are provided by the
Poisson distribution. The weight represents the execute time quanta of each packet. In our
example the average weights of packets are 100. In each queue are engeued as many
packets as can be served in a cycle. For example in QO, packets with maximum total weight
equal to 1000 are enqgeued, in Q1 packets with maximum total weight equal to 950 are
engeued, and so on. So QO has weight 1000 and can accept maximum 10 jobs of 100 each.

The packets are engeued just before the new cycle starts. This means that all queues are

34

empty when the new packets are inserted. Moreover, we assume an additional delay of 2
times quanta of each job, because of reading, writing and transfer delay.

Table 6.3-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10031 total serviced packets.

Queue Mean Latency Mean Weight Max Latency Number of Jobs
0 3908.52272727273 | 99.8837662337662 | 6423 1540

1 3228.9780971937 99.8220396988364 | 6359 1461

2 3125.08127721335 | 99.7902757619739 | 6266 1378

3 3043.6499614495 99.7918272937548 | 6180 1297

4 2917.42737896494 | 100.510016694491 | 5981 1198

5 2863.1073943662 100.348591549296 | 5971 1136

6 2762.92768791627 | 99.7887725975262 | 5499 1051

7 2650.92680412371 | 99.9536082474227 | 5487 970

Table 6.3-1 Results for as many packets as can be served in a cycle, average packet weight 100, min queue
weight 650, max queue weight 1000.

< 0O 53 0O o

Number of cycles

Figure 6.3-1 Latency for as many packets as can be served in a cycle average
packet weight 100, min queue weight 650 max queue weight 1000.

For 10031 packets to be served were needed 162 cycles while in scenario 1 208
cycles were needed to serve 10026 jobs. The above result was expected since in each cycle
more jobs are served. Identical with scenario 1, the queue with minimum weight (Q7. 650)
enjoys the minimum latency. But Q7 serviced the fewest jobs. So if we desired to serve a

small number of jobs with the minimum latency we would choose Q7. QO services the
35

maximum jobs but simultaneously it has the maximum Mean Latency. Otherwise if we
choose Q7 then the jobs will have to wait for more service cycles to complete. Furthermore
all queues served more jobs compared with scenario 1. Therefore by increasing the weight

of a queue the number of the packets that can be served is increased.

6.4 Scenario 4. As many packets as can be served in a cycle, average packet
weight 50, minimum queue weight 650, maximum queue weight 1000.

The weight of each queue, the total weight, the mode and the time of enqueing
packets are the same as scenario 3. The only difference is the weight of each packet. The
weight is given by Poisson distribution; with distributed value 50, rather 100 in previous
scenario. So QO has weight 1000 and can accept maximum 20 jobs of 50 each, rather 10 jobs
in scenariol, and so on.

Table 6.4-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10123 total serviced packets.

Queue Mean Latency Mean Weight Max Latency Number of Jobs
0 3970.19078520441 | 49.9539260220636 | 6700 1541

1 3564.08567511995 | 50.0575736806032 | 6672 1459

2 3422.30930064888 | 49.8500360490267 | 6633 1387

3 3315.99696279423 | 49.5512528473804 | 6515 1317

4 3152.15905383361 | 49.9363784665579 | 6353 1226

5 2969.58657243816 | 50.3533568904594 | 6056 1132

6 2864.81605975724 | 49.4743230625584 | 5970 1071

7 2704.33232323232 | 49.8464646464646 | 5555 990

Table 6.4-1 Results for as many packets as can be served in a cycle, average packet weight 50, min queue

weight 650, max queue weight 1000.

36

+. o+ x

— . 1 loop it 4
oo | Nt P WL W

< O 5 O + o

Number of cycles

Figure 6.4-1 Latency for as many packets as can be served in a cycle average
packet weight 50, min queue weight 650, max queue weight 1000.

As previous, the queue with minimum weight (Q7. 650) enjoys the minimum latency.
But Q7 serviced the fewest jobs. In addition QO services the maximum jobs but
simultaneously it has the maximum Mean Latency.

The main anticipated difference between scenario 3 and scenario 4 is the service
cycles. In scenario 3, 162 cycles are needed to service 10031 jobs. In scenario 4, 79 cycles
are needed to service 10123 jobs. Hence, in about 160 cycles (as scenario 3) will be served

approximately 20200 jobs, since we have smaller jobs.

6.5 Scenario 5. Average packet weight 100, weight 300 of each queue.

We have 8 queues. Queue 0 (QO0) has the largest weight and queue 7 (Q7) the
minimum weight. The weights of the queues have been assigned as follows: Q0:1000,
Q1:900, Q2:800, Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300. This means that QO can serve
packets with total weight at most 1000, Q1 at most 900, and so on. The maximum total
weight that can service in a cycle is the sum of the weights of all queues, which is 5200.

The weights of the packets that are engeued into queues are provided by the
Poisson distribution. The weight represents the execute time quanta of each packet. In our
example the average weights of packets are 100. In each queue are enqeued packets with
total weight equal to the minimum weight of the queues. The minimum weight is the weight
of queue 7, which is 300. So in QO, packets with maximum total weight equal to 300 are
engeued, in Q1 packets with maximum total weight equal to 300 are enqeued, and so on,

although Q0 weight is 1000. So in a cycle 10 packets of 100 can be served. Nevertheless

37

maximum 3 jobs of 100 each are inserted. The same occurs with other queues. The packets
are engeued just before the new cycle starts. This means that all queues are empty when
the new packets are inserted. Moreover, we assume an additional delay of 2 time quanta of
each job, because of reading, writing and transfer delay.

Table 6.5-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 1000 total serviced jobs.

Queue Mean Latency Mean Weight Max Latency Number of Jobs
0 956.067226890756 | 99.9747899159664 | 2052 119
1 1087.35658914729 | 98.2325581395349 | 2160 129
2 1041.11904761905 | 98.4761904761905 | 2138 126
3 1043.69230769231 | 98.7846153846154 | 2177 130
4 939.895161290323 | 99.2661290322581 | 2173 124
5 935.869918699187 | 100.032520325203 | 2063 123
6 940.301587301587 | 97.8174603174603 | 2052 126
7 973.09756097561 98.4065040650407 | 2139 123

Table 6.5-1 Results for packets with weight 300 of each queue, average packet weight 100.

_-:l--.-'l.-I . JFh :
] 1400 Ilfﬂn(_ % £t :Hsl-T ; 7]51' 7:
1300 1 ,4' é" x Wi
R
o oo | WL iilu '“‘1 iﬁ*"%’}m
n 200 - I| gi lll '“ [ﬂ!ﬂ-’ M
c 24518 ' il l,ll |' i
Y 600 - ﬂi H”f | '#JA‘# ! Iilﬁi
400 "S’f . _Iri
o g" "5 -IDyZER 20 25 30 354045 50
Number of cycles

Figure 6.5-1 Latency for packets with weight 300 of each queue, average packet weight 100.

The number of enqueuing packets in each queue is approximately the same because

there is no difference in the total weight of enqueuing packets in queues. The Mean

38

Latency, Max Latency, and Number of serviced Jobs are about the same. The Mean Latency
range from 935,86 to 1087,35, Max Latency range from 2052 to 2160 and the Number of
serviced Jobs range from 123 to 130. Moreover 49 cycles are needed to serve 1000 jobs.
Accordingly 490 cycles are needed to serve 10000 jobs. Additionally the most cycles needed
than all previous scenarios. Briefly in such circumstance the algorithm behaves as Round

Robin algorithm.

6.6 Scenario 6. Average packet weight 100, weight 1000 of each queue.
We have 8 queues. Queue 0 (Q0) has the largest weight and queue 7 (Q7) the minimum

weight. The weights of the queues have been assigned as follows: Q0:1000, Q1:900, Q2:800,
Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300. This means that Q0 can serve packets with
total weight at most 1000, Q1 at most 900, and so on. The maximum total weight that can
service in a cycle is the sum of the weights of all queues, which is 5200.

The weights of the packets that are engeued into queues are provided by the
Poisson distribution. The weight represents the execute time quanta of each packet. In our
example the average weights of packets are 100. In each queue are enqeued packets with
total weight equal to the maximum weight of the queues. The maximum weight is the
weight of queue 0, which is 1000. So in QO, packets with maximum total weight equal to
1000 are engeued, in Q1 packets with maximum total weight equal to 1000 are engeued,
and so on, although Q7 weight is 300. So in a cycle 3 packets of 100 can be served.
Nevertheless about 10 jobs of 100 each are inserted. The same occurs with queues 1-6. The
packets are engeued just before the new cycle starts. This means that all queues are empty
when the new packets are inserted. Moreover, we assume an additional delay of 2 time
guanta of each job, because of reading, writing and transfer delay.

Table 6.6-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 1007 total serviced jobs.

Queue Mean Latency Mean Weight Max Latency Number of Jobs
0 3230.16243654822 | 100.345177664975 | 4946 197
1 8039.74725274725 | 99.4340659340659 | 14665 182
2 9138.80503144654 | 99.4276729559748 | 17215 159
3 9396.40875912409 | 100.401459854015 | 17309 137

39

4 10653.4086956522 | 100.191304347826 115
5 12724.8888888889 | 102.088888888889 90
6 12083.8 98.4933333333333 75
7 18095.3076923077 | 99.2115384615385 52

Table 6.6-1 Results for packets with weight 1000 of each queue, average packet weight 100.

=
o
1

< O 5 0O o

Number of cycles

Figure 6.6-1 Latency for packets with weight 1000 of each queue, average packet weight 100.

QO has the minimum Mean Latency 3230.16 and minimum Max Latency 4946. The
Mean Latency rate and Max Latency are dramatically increasing in other queues. Hence Q7
has the maximum Mean Latency 18095.30 and maximum Max Latency 30650. This is a
consequence of the number of packets enqueuing in a cycle, as in a cycle enqueuing more
packets than can be served in a cycle. So packets in Q1-Q7 must wait for the next cycles to
serve. Therefore a bottleneck is happening in these queues. This effect was mostly
pronounced in lightweight queues with Q7 that have the major problem. Also QO served
more jobs (197) than other queues. Q7 served fewer jobs (52) than other queues. Also 21

cycles are needed to serve 1000 jobs. Accordingly 210 cycles are needed to serve 10000

jobs.

40

6.7 Scenario 7. Average packet weight 50 for Q0-Q3, average packet weight
100 for Q4-Q7, minimum queue weight 300, maximum queue weight 1000.
We have 8 queues as above. The weights of the queues have been assigned as
follows: Q0:1000, Q1:900, Q2:800, Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300. The
weights of the packets that are engeued into queues are provided by the Poisson
distribution. The queues 0, 1, 2 and 3 the average weights of packets are 50. The queues 4,
5, 6 and 7 the average weights of packets are 100. So in QO, above 20 packets with
maximum total weight equal to 1000 are engeued, in Q1 above 18 packets with maximum
total weight equal to 900 are engeued, and so on for queue 2 and 3. Q4 has weight 600, so
no more than 6 packets with maximum total weight equal to 600 are engeued, in Q5 above
5 packets with maximum total weight equal to 500 are engeued, and so on for queue Q4
and Q7. In all cases the packets are enqeued just before the new cycle starts. This means
that all queues are empty when the new packets are inserted. Moreover, we assume an
additional delay of 2 time quanta of each job, because reading, writing and transfer delay.
Table 6.7-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10037 total serviced jobs, in 101 cycles.

Queue Mean Latency Mean Weight Max Latency Number of Jobs
0 4392.73860182371 | 49.9620060790274 | 6626 1974

1 4026.76063829787 | 49.738829787234 6539 1880

2 3911.38951521984 | 49.7519729425028 | 6498 1774

3 3818.30796884362 | 49.8933493109647 | 6352 1669

4 2156.60342555995 | 99.6758893280632 | 4421 759

5 2107.1946403385 100.056417489422 | 4412 709

6 2075.47734138973 | 99.404833836858 4119 662

7 2011.12786885246 | 99.6590163934426 | 4135 610

Table 6.7-1 Results for packets with minimum queue weight 300, maximum queue weight 1000,

41

average packet weight 50 for Q0-Q3, average packet weight 100 for Q4-Q7.

Jobs Q0 —+——

. . i " Jobs P
0 ol g
i

| y
ik

< 0O 53 0O o

Number of cycles

Figure 6.7-1 Latency for packets with minimum queue weight 300, maximum queue weight 1000,

average packet weight 50 for Q0-Q3, average packet weight 100 for Q4-Q7.

The Mean Latency between QO0, Q1, Q2 and Q3 ranges between 3818,30 and
4392,73. Also Max Latency ranges between 6352 and 6626. Q0 has the maximum Mean
Latency and Max Latency. Q3 has the minimum Mean Latency and minimum Max Latency.
But QO has services most jobs, 1974, rather Q3 which has serviced 1669 jobs, of about 50
each.

For Q4, Q5, Q6 and Q7 the Mean Latency ranges between 2011,12 and 2156,60. Also
Max Latency ranges between 4135 and 4421. Q4 has the maximum Mean Latency and
maximum Max Latency. Q7 has the minimum Mean Latency and Q6 has the minimum Max
Latency. But Q4 has services most jobs, 759, rather Q7 which has serviced 610 jobs, of about
100 each.

From all queues Q0 has the maximum Mean Latency and Max Latency. Q7 has the
minimum Mean Latency and Max Latency. But QO services most jobs 1974, of 50 each,
rather Q7 which services 610 jobs, of 100 each.

So if we have many small jobs we will choose QO. If we have fewer small jobs and we
care about latency we will choose Q3. If we have many large jobs we will choose Q4. If we

have fewer large jobs and we care about latency we will choose Q7.

42

6.8 Scenario 8. Average packet weight 100 for Q0-Q3, average packet weight
50 for Q4-Q7, minimum queue weight 300, maximum queue weight 1000.

We have 8 queues as above. The weights of the queues have been assigned as
follows: Q0:1000, Q1:900, Q2:800, Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300. The
weights of the packets that are engeued into queues are provided by the Poisson
distribution. For queues 0, 1, 2 and 3 the average weights of packets are 100. The queues 4,
5, 6 and 7 the average weights of packets are 50. So in Q0, above 10 packets with maximum
total weight equal to 1000 are engeued, in Q1 above 9 packets with maximum total weight
equal to 900 are engeued, and so on for queue 2 and 3. Q4 has weight 600, so about 12
packets with maximum total weight equal to 600 are enqgeued, in Q5 above 10 packets with
maximum total weight equal to 500 are engeued, and so on for queues Q4 and Q7. In all
cases the packets are enqgeued just before the new cycle starts. This means that all queues
are empty when the new packets are inserted. Moreover, we assume an additional delay of
2 time quanta of each job, because reading, writing and transfer delay.

Table 6.8-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10051 total serviced jobs, in 110 cycles.

Queue Mean Latency Mean Weight Max Latency Number of Jobs
0 2776.37523809524 | 99.7114285714286 | 5676 1050

1 2713.11212121212 | 100.083838383838 | 5564 990

2 2673.33724653148 | 99.6029882604056 | 5377 937

3 2629.11173814898 | 99.8092550790068 | 5393 886

4 4295.09613130129 | 49.8886283704572 | 6608 1706

5 3804.53875 49.86 6619 1600

6 3650.17222963952 | 49.6829105473965 | 6493 1498

7 3485.12066473988 | 49.7832369942197 | 6387 1384

Table 6.8-1 Results for packets with minimum queue weight 300, maximum queue weight 1000, average

packet weight 100 for Q0-Q3, average packet weight 50 for Q4-Q7.

43

< 0O 53 0O o

Number of cycles

Figure 6.8-1 Latency for packets with minimum queue weight 300, maximum queue weight
1000, average packet weight 100 for Q0-Q3, average packet weight 50 for Q4-Q7.

The Mean Latency between QO0, Q1, Q2 and Q3 ranges between 2629,11 and
2776,35. Also Max Latency ranges between 5676 and 5377. Q0 has the maximum Mean
Latency and Max Latency. Q3 has the minimum Mean Latency and Q2 has the minimum
Max Latency. But QO has serviced most jobs, 1050, rather than Q3 which has serviced 886
jobs, of about 100 each.

For Q4, Q5, Q6 and Q7 the Mean Latency ranges between 3485,12 and 4295,09. Also
Max Latency ranges between 6387 and 6619. Q4 has the maximum Mean Latency. Q5
maximum Max Latency, Q4 is next with very small difference (6608). Q7 has the minimum
Mean Latency and the minimum Max Latency. But Q4 has serviced most jobs, 1706, rather
Q7 which has serviced 1384 jobs, of about 50 each.

So if we have many small jobs we will choose Q4. If we have fewer small jobs and we
care about latency we will choose Q7. If we have many large jobs we will choose Q1. If we

have fewer large jobs and we care about latency we will choose Q3.

6.9 Scenario 9. Average packet weight 100, insert 3 new packets every 800
guanta, minimum queue weight 300, maximum queue weight 1000.
The scenario is based on the following assumptions. Suppose we have 8 queues.
Queue 0 (QO) has the largest weight and queue 7 (Q7) the minimum weight. The weights of
the queues have been assigned as follows: Q0:1000, Q1:900, Q2:800, Q3:700, Q4:600,

Q5:500, Q6:400 and Q7:300. This means that QO can serve packets with total weight at most
44

1000, Q1 at most 900, and so on. The maximum total weight that can service in a cycle is the
sum of the weights of all queues, which is 5200.

The weights of the packets that are engeued into queues are provided by the
Poisson distribution. The weight represents the execute time quanta of each packet. In our
example the average weights of packets are 100. The new packets are enqueued every 800
guanta. The total number of new packets is 3 for each queue. This means that the packets
are engeued during the cycle and that queues are non empty when the new packets are
inserted. So the new packets will be served in the next cycle. Additionally the enqueuing of
packets take place about 6,5 times per cycle. This means that in each cycle totally 19
packets, with 1900 total weights are enqueued in each queue. Hence in each queue equeue
more packets than can be serviced are enqueued.

Moreover, we assume an additional delay of 2 time quanta of each job, because of
reading, writing and transfer delay.

Table 6.9-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10016 total serviced packets.

Queue Mean Latency Mean Weight Max Latency Number of Jobs
0 93397.5945945946 99.2607607607608 179038 1998

1 139561.345546787 100.033258173619 272308 1774

2 180265.377394636 99.8690932311622 359649 1566

3 226233.677753141 100.311899482631 449688 1353

4 270598.750437828 100.039404553415 537827 1142

5 309950.241596639 99.3518907563025 617593 952

6 354316.690277778 100.319444444444 714030 720

7 400926.692759296 100.195694716243 800971 511

Table 6.9-1 Average packet weight 100, insert 3 new packets every 800 quanta, minimum queue weight

300, maximum queue weight 1000.

45

< O 5 0O o

mﬁ#‘?}obs Qo ——
2 obs QL a3
2 Jobs Q2 —%—

f‘*' Jobs Q3 —8—
e Jobs Q4
ﬁé‘ﬁ Jobs Q5
ot Jobs Q5 —e—
=
ﬁ* Jobs Q7 —=—

o 100

Number of cycles

Figure 6.9-1 Latency for average packet weight 100, insert 3 new packets every 800 quanta,
minimum queue weight 300, maximum queue weight 1000.

From the above table we can understand that in such case, the queue with
maximum weight (Q0, 1000) enjoys the minimum latency and the maximum number of
serviced jobs. Q7 serviced the fewest jobs with the maximum latency. So if we desired many
jobs to service with the minimum latency we would choose Q0. Otherwise if we choose Q7
then fewer jobs will have to wait for more service cycles to complete. In total we have 209

service cycles and 10016 total serviced jobs are submitted.

6.10 Scenario 10. Average packet weight 100, insert 3 new packets every 800
guanta, minimum queue weight 650, maximum queue weight 1000.

We have 8 queues. Queue 0 (QO0) has the largest weight and queue 7 (Q7) the
minimum weight. The weights of the queues have been assigned as follows: Q0:1000,
Q1:950, Q2:900, Q3:850, Q4:800, Q5:750, Q6:700 and Q7:650. This means that Q0 can serve
packets with total weight at most 1000, Q1 at most 950, and so on. The maximum total
weight that can service in a cycle is the sum of the weights of all queues, which is 6600.

The weights of the packets that are engeued into queues are provided by the

Poisson distribution. The weight represents the execute time quanta of each packet. In our

46

example the average weights of packets are 100. So the new packets will be served in the
next cycle.

3 new packets are enqueued every 800 quanta. This means that the packets are
engeued during the cycle and that queues are non empty when the new packets are
inserted. Additionally the enqueuing of packets take place about 8 times per cycle. This
means that in each cycle totally 24 packets, with 2400 total weights, are enqueued in each
gueue. Hence in each queue are equeued more packets than can be serviced.

Moreover, we assume an additional delay of 2 time quanta of each job, because of
reading, writing and transfer delay.

Table 6.10-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10035 total serviced packets and 162 service cycles

Queue Mean Latency Mean Weight Max Latency Number of Jobs
0 190076.655642023 | 99.6634241245136 | 375360 1542

1 207838.589690722 | 100.039175257732 | 411114 1455

2 223753.073454545 | 99.8138181818182 | 444903 1375

3 239614.865637066 | 100.350579150579 | 477960 1295

4 258385.193574959 | 100.000823723229 | 511825 1214

5 274210.406660824 | 99.4609991235758 | 542454 1141

6 292585.232535885 | 100.444019138756 | 582382 1045

7 309263.135330578 | 99.7944214876033 | 614371 968

Table 6.10-1 Average packet weight 100, insert 3 new packets every 800 quanta, minimum queue weight 650,
maximum queue weight 1000.

As in scenario 9 the queue with maximum weight (Q0, 1000) enjoys the minimum
latency and the maximum number of serviced jobs. Q7 serviced the fewest jobs with the
maximum latency. So if we desired many jobs to service with the minimum latency we
would choose Q0. Otherwise if we choose Q7 then fewer jobs will have to wait for more
time to be completed. In total we have 209 service cycles and 10034 total serviced jobs are

submitted.

47

< O 53 0O o

Number of cycles

Figure 6.10-1 Latency for average packet weight 100, insert 3 new packets every 800 quanta, minimum
queue weight 650, maximum queue weight 1000.

In comparison with scenario 9 (where about 10000 packets were served), Q0-Q3
have greater latency and fewer jobs served. On the other hand, Q3-Q7 have less latency but
more jobs served. Although the serviced packets are almost the same the number of cycle is
less (162 instead of 209). If we assume the same number of cycle then more jobs per queue
will be served, in comparison to scenario 9. This is due to queues weight, which is greater in

scenario 10, than in scenario 9.

6.11 Scenario 11. Average packet weight 50, insert 3 new packets every 800
guanta, minimum queue weight 650, maximum queue weight 1000.

We have 8 queues. Queue 0 (QO0) has the largest weight and queue 7 (Q7) the
minimum weight. The weights of the queues have been assigned as follows: Q0:1000,
Q1:950, Q2:900, Q3:850, Q4:800, Q5:750, Q6:700 and Q7:650. This means that QO can serve
packets with total weight at most 1000, Q1 at most 950, and so on. The maximum total
weight that can service in a cycle is the sum of the weights of all queues, which is 6600.

The weights of the packets that are engeued into queues are provided by the
Poisson distribution. The weight represents the execute time quanta of each packet. In our
example the average weights of packets are 50. So the new packets will be served in the

next cycle.

48

3 new packets are enqueued every 800 quanta. This means that the packets are
engeued during the cycle and that queues are non empty when the new packets are
inserted. Additionally the enqueuing of packets take place about 8 times per cycle. This
means that in each cycle totally 24 packets, with 2400 total weights, are enqueued in each
gueue. Hence in each queue are equeued more packets than can be serviced.

Moreover, we assume an additional delay of 2 time quanta of each job, because of
reading, writing and transfer delay.

Table 6.11-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10075 total serviced packets.

Queue Mean Latency Mean Weight Max Latency Number of Jobs
0 5280.03301886792 | 49.2767295597484 | 6781 1272
1 5315.37716535433 | 50.3748031496063 | 6491 1270
2 5368.7474429583 50.1054287962234 | 6633 1271
3 5418.1332807571 49.98738170347 6493 1268
4 5470.12066246057 | 50.057570977918 6549 1268
5 5544.24861878453 | 49.8468823993686 | 6999 1267
6 6534.18304278922 | 50.4112519809826 | 8802 1262
7 20283.7593984962 | 49.7852965747703 | 33894 1197

Table 6.11-1 Average packet weight 50, insert 3 new packets every 800 quanta, minimum queue weight 650,
maximum queue weight 1000.

From the above table we can work out that in such case, the queue with maximum
weight (Q0, 1000) enjoys the minimum latency and the maximum number of serviced jobs,
but with little difference compared with queues Q1-Q5. Q7 serviced the fewest jobs, as
expected, with the maximum latency, about five times greater than Q0. Q6 achieves better
performance in relation to Q7. So if we desired many jobs to be serviced with the minimum
latency we would choose Q0 and then one queue of Q1-Q5. Otherwise if we choose Q7,
then fewer jobs will have to wait for more time to complete. Also Q7 achieves the worst
performance due to large number of engeuing packets (24 per cycle), while just 13 packets
may be serviced per cycle. In total we have 95 service cycles and 10075 total serviced jobs

are submitted.
49

Jobs Q0 —=*—

JLQYQ&QJI*_\" e

putt#Jobs Q2 —¥—

b oo Jobs Q3 —&—
g | - Jobs Q4
=oHHE gttt Jobs Q5

o Jobs Q5 —e—

A Jobs Q7 —=—

< O >3 O o

Number of cycles

Figure 6.11-1 Latency for average packet weight 50, insert 3 new packets every 800 quanta, minimum queue
weight 650, maximum queue weight 1000.

6.12 Scenario 12. Average packet weight 50, insert 3 new packets every 800
quanta, minimum queue weight 300, maximum queue weight 1000.
As in the previous scenario, but in this example the weights of the queues have been
assigned as follows: Q0:1000, Q1:900, Q2:800, Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300.
The average weights of packets are 50. Table 6.12-1 shows the Mean Latency, Mean Weight,

Max Latency, and Number of serviced Jobs, for 10036 total serviced packets, in 208 cycles.

Queue Mean Latency Mean Weight Max Latency Number of Jobs
0 2252.02821316614 | 49.2766457680251 | 5232 1276
1 2284.76983503535 | 50.3794186959937 | 5066 1273
2 2334.9677672956 50.1147798742138 | 4949 1272
3 2383.08818897638 | 49.9370078740157 | 4981 1270
4 2430.23599052881 | 50.0568271507498 | 5034 1267
5 2516.33412322275 | 49.8515007898894 | 5276 1266
6 3039.63370253165 | 50.3773734177215 | 9051 1264
7 34546.206445993 49.8214285714286 | 48875 1148

Table 6.12-1 1 Average packet weight 50, insert 3 new packets every 800 quanta, minimum queue weight 300,

maximum queue weight 1000.

50

45 | - Jobs Q1
| &_&:fh Jobs Q2 —%—
L | ”J__M JDES gs —&F—
Lt Jobs Q4
a T Jobs G5
gt Jobs Q5 —e—
t | gM Jobs Q7 —a—
e | i
g
n i
c v
| £
y | ;
|

Number of cycles

Figure 6.12-1 1 Latency for average packet weight 50, insert 3 new packets every 800 quanta, minimum
gueue weight 300, maximum queue weight 1000.

In comparison with scenario 11 208 cycles were needed for 10036 packets to be
served rather 95 cycles for 10075 packets to be served. This seems reasonable since the
weights of packets are less so more cycles are needed to serve the same number of jobs. The
gueue with maximum weight (QO0, 1000) enjoys the maximum number of serviced jobs and
the minimum latency, but with little difference compared with queues Q1-Q5. Q7 serviced
the fewest jobs, as expected, with the maximum latency, about five times greater than QO.
This is due to the large number of engeuing packets (24 per cycle) while only 13 packets may
be serviced per cycle. Q6 achieves better performance in relation to Q7. In total we have 208
service cycles and 10036 total serviced jobs are submitted.

The following measurements are based on the same scenario. At the beginning all
the queues are full with the maximum number of packets that can be served in a cycle. Each
time a packet is dequeued then a new packet is enqueued in the same queue. In this way the

gueues are always full. The new packets will be served in the next cycle.

6.13 Scenario 13. Average packet weight 100, minimum queue weight 300,
maximum queue weight 1000. Each time a packet is dequeued then a new
packet is enqueued in the same queue.

Suppose we have 8 queues. Queue 0 (Q0) has the largest weight and queue 7 (Q7)
the minimum weight. The weights of the queues have been assigned as follows: Q0:1000,

Q1:900, Q2:800, Q3:700, Q4:600, Q5:500, Q6:400 and Q7:300. This means that QO can serve

51

packets with total weight at most 1000, Q1 at most 900, and so on. The maximum total
weight that can service in a cycle is the sum of the weights of all queues, which is 5200.

The weights of the packets that are engeued into queues are provided by the
Poisson distribution. The weight represents the execute time quanta of each packet. In our
example the average weights of packets are 100. Table 6.13-1 shows the Mean Latency,

Mean Weight, Max Latency, and Number of serviced Jobs, for 10003 total serviced packets,

in 225 cycles.

Queue Mean Latency Mean Weight Max Latency Number of Jobs
0 4426.63968795709 | 98.2662116040956 | 5572 2051

1 4423.33920704846 | 98.454295154185 4768 1816

2 4422.75031446541 | 98.8509433962264 | 4778 1590

3 4421.88619676946 | 98.298825256975 4768 1362

4 4420.99383259912 | 98.2105726872247 | 4779 1135

5 4419.76670317634 | 98.7338444687842 | 4755 913

6 4416.56304985337 | 99.0630498533724 | 4751 682

7 4417.45374449339 | 99.2599118942731 | 4755 454

Table 6.13-1 Each time a packet is dequeued then a new packet is enqueued in the same queue. Average
packet weight 100, minimum queue weight 300, maximum queue weight 1000.

Jobs QO —+—
Jobs Q1 —+
conn 4+ Jobs Q2 —%—
) Jobs Q3 —8—
Jobs Q4

< 0O 53 O o

100 150 200 250

Number of cycles

Figure 6.13-1 Latency for each time a packet is dequeued then a new packet is enqueued in the same queue.
Average packet weight 100, minimum queue weight 300, maximum queue weight 1000.

52

The Mean Latency is approximately the same for all queues. Q0 has the maximum
latency. This occurs in the first cycle so it isn’t representative. Q0 has serviced most jobs,
2051, next is Q1 which has serviced 1816 jobs, and so on. Q7 has serviced fewer jobs, 454.

So QO has the best performance followed by the other queues.

6.14 Scenario 14. Average packet weight 50, minimum queue weight 300,
maximum queue weight 1000. Each time a packet is dequeued then a new
packet is enqueued in the same queue.

As in the previous scenario, but in this example the average weights of packets are
50. Table 6.14-1 shows the Mean Latency, Mean Weight, Max Latency, and Number of

serviced Jobs, for 10065 total serviced packets, in 106 cycles.

Queue Mean Latency Mean Weight Max Latency Number of Jobs
0 4837.83384615385 | 48.9389743589744 | 5615 1950

1 4832.87843137255 | 48.5058823529412 | 5233 1785

2 4831.48795944233 | 48.8384030418251 | 5241 1578

3 4829.6754194019 48.4106491611962 | 5230 1371

4 4826.44069264069 | 48.0337662337662 | 5234 1155

5 4824.74661105318 | 48.8571428571429 | 5227 959

6 4818.84124830393 | 48.4803256445048 | 5217 737

7 4815.26603773585 | 48.3169811320755 | 5207 530

Table 6.14-1 Each time a packet is dequeued then a new packet is enqueued in the same queue. Average
packet weight 50, minimum queue weight 300, maximum queue weight 1000.

< 0O 53 0O o

L
I——

Jobs Q00 —+—
Jobs Q1

Number of cycles

Figure 6.14-1 Latency for each time a packet is dequeued then a new packet is enqueued in the

same queue. Average packet weight 50, minimum queue weight 300, maximum queue weight 1000

53

The conclusions from Table 6.14-1 are the same as in scenario 13. QO has serviced
most jobs, 1950, next is Q1 which has serviced 1785 jobs, and so on. Q7 has serviced fewer

jobs, 530. So QO has the best performance followed by the other queues.

6.15 Scenario 15. Average packet weight 100, minimum queue weight 650,
maximum queue weight 1000. Each time a packet is dequeued then a new
packet is enqueued in the same queue.

The weights of the queues have been assigned as follows: Q0:1000, Q1:950, Q2:900,
Q3:850, Q4:800, Q5:750, Q6:700 and Q7:650. The maximum total weight that can be
serviced in a cycle is the sum of the weights of all queues, which is 6600. This implies that
more jobs can be served in a cycle, compared to the previous scenarios where the total
weight was 5200. In our example, the average weights of packets are 100. Table 6.15-1
shows the Mean Latency, Mean Weight, Max Latency, and Number of serviced Jobs, for

10041 total serviced packets, in 178 cycles.

Queue Mean Latency Mean Weight Max Latency Number of Jobs
0 5727.28176100629 | 98.3012578616352 | 6986 1590

1 5728.09986595174 | 98.5764075067024 | 6281 1492

2 5722.24184397163 | 98.2170212765957 | 6275 1410

3 5723.66559485531 | 99.1744372990354 | 6278 1244

4 5720.85227272727 | 98.6298701298701 | 6281 1232

5 5728.53405017921 | 98.5779569892473 | 6283 1116

6 5719.83996212121 | 98.4611742424242 | 6278 1056

7 5724.15427302997 | 98.2297447280799 | 6281 901

Table 6.15-1 Each time a packet is dequeued then a new packet is enqueued in the same queue. Average
packet weight 100, minimum queue weight 650, maximum queue weight 1000.

54

Jobs QO —+—
Jobs Q1

T Jobs Q2 —%—
Lo Jobs Q3 —H—
Lo Jobs Q4

Jobs Q5

< O 5 O + o

Number of cycles

Figure 6.15-1 Latency for each time a packet is dequeued then a new packet is enqueued in the same queue.
Average packet weight 100, minimum queue weight 650, maximum queue weight 1000.

From the above table we can understand that in such case, the Mean Latency is
approximately the same for all queues. Q0 has the maximum latency. This occurs in the first
cycle so it isn’t representative. Q0 has serviced most jobs, 1590, next is Q1 which has
serviced 1492 jobs, and so on. Q7 has serviced fewer jobs, 901. So Q0 has the best
performance followed by the other queues.

In comparison with scenario 13, the only difference is in the weights of the queues,
since the packets have the same Mean Weight, which is 100. As a result, in scenario 14 QQ,
Q1, Q2, Q3 have served fewer jobs than scenario 13. Moreover Q4, Q5, Q6, Q7 have served
more jobs than in scenario 13. Such a small decrease in the weight of queues has result in

slight changes in the total number of serviced packets between neighboring tails.

6.16 Scenario 16. Average packet weight 50, minimum queue weight 650,
maximum queue weight 1000. Each time a packet is dequeued then a new
packet is enqueued in the same queue.

As in the previous scenario, the weights of the queues have been assigned as
follows: Q0:1000, Q1:950, Q2:900, Q3:850, Q4:800, Q5:750, Q6:700 and Q7:650. But in this
example the average weights of packets are 50. Table 6.16-1 shows the Mean Latency,
Mean Weight, Max Latency, and the Number of serviced Jobs, for 10041 total serviced

packets, in 82 cycles.

55

Queue Mean Latency Mean Weight Max Latency Number of Jobs
0 6172.39896707553 | 48.5842479018722 | 7090 1549

1 6165.38143631436 | 48.579945799458 6708 1476

2 6164.97780959198 | 48.4874731567645 | 6716 1397

3 6163.29543634908 | 48.8783026421137 | 6697 1249

4 6163.16530944625 | 48.4771986970684 | 6690 1228

5 6160.36271808999 | 49.0982552800735 | 6686 1089

6 6157.75609756098 | 48.4634146341463 | 6662 1066

7 6155.9179331307 48.2330293819656 | 6657 987

Table 6.16-1 Each time a packet is dequeued then a new packet is enqueued in the same queue. Average
packet weight 50, minimum queue weight 650, maximum queue weight 1000.

Jobs Qo —+—
Jobs Q1

4500 -

Jobhs Q7 —=—

< O 53 0O o
e

Number of cycles

Figure 6.16-1 Latency for each time a packet is dequeued then a new packet is enqueued in the same
queue. Average packet weight 50, minimum queue weight 650, maximum queue weight 1000.

From table 6.16-1 we can figure out that in such case, the latency is Q0 has the
maximum Mean Latency and Q7 the minimum, but the difference between them is only 17
guanta. This occurs in the first cycle so it isn’t representative. Q0 has serviced most jobs,
1549, next is Q1 which has serviced 1476 jobs, and so on. Q7 has serviced fewer jobs, 987. So
QO has the best performance followed by the other queues.

In comparison with scenario 15, the only difference is in the weights of the packets,
which is 50, whereas in scenario 15 it is 100. In both cases the number of serviced job is
almost the same. But in scenario 15 the Mean Latency is less. Therefore larger weight of

packet accrues better Mean Latency.
56

In comparison with scenario 14 the only difference is in the weights of the queues,
since the packets have the same Mean Weight, which is 50. As a result, in scenario 16 QQO,
Q1, Q2, Q3 have served fewer jobs than scenario 14. Also Q4, Q5, Q6, Q7 have served more
jobs than scenario 14. So a small decrease in the weight of the queues has as a result the

small changes in the total number of serviced packets between neighboring tails.

57

7. Conclusions and Future extension

In comparison to algorithms presented in related works, the algorithm now
presented resembles Weighted Round Robin and Deficit Round Robin. However, both
algorithms have been recommended for use in computer networks. WRR has been
proposed for asynchronous transfer mode (ATM) networks and DRR for servicing queues in
a router (or gateway). A necessary condition for WRR is the fixed size of packet. Each packet
needs to have the same size in all queues. In contrast, the proposed algorithm is
independent of the packet size. Also DRR services packets of different size but at the same
time it services all packets together. Our algorithm, however, services one packet from a
gueue at a time. But in total, more than one packet will be served in proportion to queue
weight. The enqueue time of serviced packets is also unclear for WRR and DRR. The above
algorithms served all the packets independent of the enqueue time. For reason of fairness,
though, the proposed algorithm serves only the packets that have been queued before a
new cycle has started.

The algorithm combines different algorithmic techniques. Each separate queue is a
gueue FIFO. It doesn’t require a sorted priority queue. So it is easy to be implemented and
at the same time no computing power for classification is wasted. There is no prioritization
which means that each process may eventually be completed, therefore, no starvation. All
qgueues are organized as a multi-queue technique. Each queue has different total weight.
Hence the total number of serviced job is proportional to the total weight for each queue.
In a cycle the maximum total weight that can be served is at most equal to the sum of the
weights of queues. For reasons of fairness the scheduler serves only the packets that have
been enqueued when the cycle started. New packets enqueuing after the cycle is started
will serve in the next cycle. When a new cycle started the first queue (the queue with the
maximum weight) isn’t examined first but the control continues from the next queue where
it left off the previous cycle. Otherwise the lower weight tails will be served too late.
Admittedly this favors the queues with lower weight in case of simultaneously enqueuing of
new packets to all queues or enqueuing new packets just before the start of the new cycle.
However, in a real time system this is rarely case, since in such systems the enqueue of a
packet is continuously performed and furthermore not at the same time for all queues.

58

The queue with the highest weight serves larger number of packets. The queue with
the lowest weight serves less number of packets. But the tail with the largest weight has a
greater latency per cycle and the queue with less weight has less latency if the packets are
enqueued just before the new cycle starts. If the weight of the packet (packet w;) is smaller
the difference in the average latency between neighboring queues is more balanced. If the
packets are enqueued during the cycle, then the queue with largest weight has less mean
latency. Also less weight of packets has as a result more packets to be serviced in the queue
per cycle. Moreover the increase of the weight of the tail has as a result greater number of
serviced jobs.

If in the tails are enqueued packets weighing more than the weight of a queue, then
there is bottleneck. The problem is most acute in the lower weight queues where major
service delays occur. If the weights packets follow a normal distribution and the enqueued
packets have less weight than the weight of the queues the algorithm behaves like WRR
with small differences in the average latency and the total number of performing packet per

queue.

The timing of the engeuing of packets is important to the performance of the
algorithm. If new packets are enqueued at the beginning of the cycle they will serve in the
next cycle so it will have the greatest latency. The ideal insertions of new packets take place
just before the start of the new cycle, something hard in real-time systems. Moreover the
selection of the queue for the enqueue of packets affects the performance of the algorithm.
If there are several packets to serve, it is better to select heavy queues. If we are interested
in the execution time of a process it is best queues to select with less weight.

Depending on the policy we want to follow we can make various modifications to the
algorithm. In our algorithm the new enqueuing packets are not served during the same
cycle. For reasons of fairness they will be served in the next cycle. Another idea is always to
serve the new packets until the permitted weight of the queue, and not to wait for the next
cycle. Another aspect is to serve the new packets until the queue weight; but if the queue
becomes empty during the cycle without achieving the maximum serviced weight and then
new packets are enqueued, these new packets will be served in the next cycle. This is easily

done in our algorithm if the control of the field order is not to take place. Another

59

modification, similar to deficit round robin, is the remaining weight that is not served during
the cycle to be added to the weight of the next cycle. However, in such case, the maximum

serviced weight will be not fixed in a cycle.

60

References

[1] Rogers, P. (2013). Heterogeneous system architecture overview. In Hot Chips(Vol. 25).

[2] Rajput, I. S., & Gupta, D. (2012). A priority based round robin CPU scheduling algorithm
for real time systems. International Journal of Innovations in Engineering and
Technology, 1(3), 1-11.

[3] Kinsy, M., & Devadas, S. (2014, September). Algorithms for scheduling task-based
applications onto heterogeneous many-core architectures. In High Performance
Extreme Computing Conference (HPEC), 2014 IEEE (pp. 1-6). |IEEE.

[4] Kyriazis, G. (2012). Heterogeneous system architecture: A technical review. AMD Fusion
Developer Summit.

[5] Chitlur, N., Srinivasa, G., Hahn, S., Gupta, P. K., Reddy, D., Koufaty, D., & lyer, R. (2012,
February). QuicklA: Exploring heterogeneous architectures on real prototypes. In
High Performance Computer Architecture (HPCA), 2012 IEEE 18th International
Symposium on (pp. 1-8). IEEE.

[6] ARM big.LITTLE, 2015, [online] available from: < https://en.wikipedia.org/wiki/ARM big.
LITTLE> [accessed 12/10/2015]

[7] Thompson, C. J., Hahn, S., & Oskin, M. (2002, November). Using modern graphics
architectures for general-purpose computing: a framework and analysis. In
Proceedings of the 35th annual ACM/IEEE international symposium on
Microarchitecture (pp. 306-317). IEEE Computer Society Press.

[8] Lee, H., Faruque, A., & Abdullah, M. (2014, March). GPU-EvR: Run-time event based real-
time scheduling framework on GPGPU platform. In Design, Automation and Test
in Europe Conference and Exhibition (DATE), 2014 (pp. 1-6). IEEE.

[9] Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A parallel programming standard for
heterogeneous computing systems. Computing in science & engineering, 12(1-3),
66-73.

[10] Fang, J., Varbanescu, A. L., & Sips, H. (2011, September). A comprehensive performance
comparison of CUDA and OpenCL. In Parallel Processing (ICPP), 2011
International Conference on (pp. 216-225). IEEE.

[11] Karimi, K., Dickson, N. G., & Hamze, F. (2010). A performance comparison of CUDA and
OpenCL. arXiv preprint arXiv:1005.2581.

[12] Srinivasan, A. (2003). Efficient and flexible fair scheduling of real-time tasks on
multiprocessors (Doctoral dissertation, University of North Carolina at Chapel
Hill).

61

[13] Kaladevi M, Phil M. &.Sathiyabama S, (2010) “A Comparative Study of Scheduling
Algorithms for Real Time Task”, International Journal of Advances in Science and
Technology, (Vol. 1, No. 4).

[14] Sirohi, A., Pratap, A., & Aggarwal, M. (2014). Improvised Round Robin (CPU) Scheduling
Algorithm. International Journal of Computer Applications, 99(18), 40-43.

[15] Di Francesco, P., & Sweden, V. (2012). Design and implementation of a MLFQ scheduler
for the Bacula backup software (Doctoral dissertation, Master thesis in Global
Software Engineering).

[16] Lamminen, O. P. (2007). Implementation and performance analysis of a delay based
packet scheduling algorithm for an embedded open source router (Doctoral
dissertation, Helsinki University of Technology).

[17] Abraham Silberschatz, P. B. Galvin, G. Gagne, (2005), Operating System Concepts,7th
edition, John Wiley & Sons.

[18] Katevenis, M., Sidiropoulos, S., & Courcoubetis, C. (1991). Weighted round-robin cell
multiplexing in a general-purpose ATM switch chip. Selected Areas in
Communications, IEEE Journal on, 9(8), 1265-1279.

[19] Shreedhar, M., & Varghese, G. (1995, August). “E cient fair queuing using de cit round
robin", In Proceedings of the ACM SIGCOMM (Vol. 95).

[20] Kinsy, M., & Devadas, S. (2014, September). Algorithms for scheduling task-based
applications onto heterogeneous many-core architectures. In High Performance
Extreme Computing Conference (HPEC), 2014 IEEE (pp. 1-6). IEEE.

[21] Arabnejad, H., & Barbosa, J. G. (2014). List scheduling algorithm for heterogeneous
systems by an optimistic cost table. Parallel and Distributed Systems, IEEE
Transactions on, 25(3), 682-694.

[22] Duran, A., Ayguadé, E., Badia, R. M., Labarta, J., Martinell, L., Martorell, X., & Planas, J.
(2011). Ompss: a proposal for programming heterogeneous multi-core
architectures. Parallel Processing Letters, 21(02), 173-193.

[23] Chronaki, K., Rico, A., Badia, R. M., Ayguadé, E., Labarta, J., & Valero, M. (2015).
Criticality-Aware Dynamic Task Scheduling for Heterogeneous Architectures

[24] Shetti, K. R., Fahmy, S., & Bretschneider, T. (2013, December). Optimization of the HEFT
algorithm for a CPU-GPU environment. In Parallel and Distributed Computing,
Applications and Technologies (PDCAT), 2013 International Conference on (pp.
212-218). IEEE.

[25] Topcuoglu, H., Hariri, S., & Wu, M. Y. (2002). Performance-effective and low-complexity
task scheduling for heterogeneous computing. Parallel and Distributed Systemes,
IEEE Transactions on, 13(3), 260-274.

62

[26] Canon, L. C., Jeannot, E., Sakellariou, R., & Zheng, W. (2008, January). Comparative
evaluation of the robustness of dag scheduling heuristics. In Grid Computing (pp.
73-84). Springer US.

[27] Beaumont, O., Boudet, V., & Robert, Y. (2001). The iso-level scheduling heuristic for
heterogeneous processors.

63

