
Enabling Efficient Job Dispatching in Accelerator-extended

Heterogeneous Systems with Unified Address Space

Georgios Kornaros∗ and Marcello Coppola†
∗Department of Informatics Engineering, Technological Educational Institute of Crete, Heraklion 71500, Crete, Greece

Email: kornaros@ie.teicrete.gr
†STMicroelectronics, Grenoble, France

Abstract—In addition to GPUs that see increasingly wide-
spread use for general-purpose computing, special-purpose accel-
erators are widely used for their high efficiency and low power
consumption, attached to general-purpose CPUs, thus forming
Heterogeneous System Architectures (HSAs). This paper presents
a new communication model for heterogeneous computing, that
utilizes a unified memory space for CPUs and accelerators and
removes the requirement for virtual-to-physical address trans-
lation through an I/O Memory Management Unit (IOMMU),
thus making stronger the adoption of Heterogeneous System
Architectures in SoCs that do not include an IOMMU but still
representing a large number in real products. By exploiting user-
level queuing, workload dispatching to specialized hardware ac-
celerators allows the removal of drawbacks present when copying
objects through using the operating system calls. Additionally,
dispatching is structured to enable fixed-size packet management
that hardware specialized logic accelerates. To also eliminate
IOMMU performance loss and IOMMU management complexity,
we propose direct accelerator data placement in contiguous space
in system-memory, where, the dispatcher provides trasparent
access to the accelerators and at the same time offers an easy
abstraction in the programming layer for the application. We
demonstrate dispatching rates that exceed ten thousand jobs
per second implementing architectural support on a low-cost
embedded System-on-Chip, bounded only by the computing
capacity of the hardware accelerators.

I. INTRODUCTION

In recent years, as well as the trend for embedding multiple

cores in a single chip, an architectural trend is also the

growing prominence of heterogeneous architectures [1][2].

Today, processor manufacturers including AMD, Intel, and

NVIDIA integrate CPUs and GPUs on the same chip while

a coalition of companies including AMD, ARM, Qualcomm,

and Samsung recently formed the Heterogeneous System Ar-

chitecture (HSA) Foundation to better support heterogeneous

computation. Moreover, system-level accelerators such as Intel

Phi processing engines or other FPGA-based coprocessors are

emerging for High-Performance Computing (HPC) in the form

of heterogeneous platforms to deliver highly parallel process-

ing. To address efficiency in terms of performance/power ratio,

the use of on-chip accelerators in multi-, many-core systems

is becoming more popular [3]. As scaling the number of

processors does not always translate to linear speedup, on-chip

application-specific hardware components are increasingly

employed to improve the overall system performance; such

custom accelerators offer power-efficient implementations of

a particular functionality. However, even though physically

putting together CPUs and GPUs or other accelerators on the

same chip or platform, the available programming models still

consider them separated.

This strong need towards heterogeneous computing has

driven the adaptation of applications mostly engineering to

make effective use of multi-core CPUs and massively parallel

GPUs using toolkits such as Threading building blocks (TBB),

OpenMP, CUDA, OpenCL [4][5], and others like them. Each

offers a different approach to parallelization [6], exploiting

for instance an intuitive fork-join model and enabling locality-

friendly coarse grained parallelism (OpenMP), or expressing

fine-grained parallelism (OpenCL), enabling for example, im-

plicit or explicit vectorization at the compiler level. Addition-

ally, to amortize the overhead of offloading, large kernels are

suggested and throughput-oriented code to more easily hide

the latency and variability of each individual operation. At the

same time, unifying the memory space has emerged in GPGPU

computing with features such as shared virtual memory and

demand paging [7]. Unfortunately it comes at a price, and that

is performance. Automatic memory management is convenient

but suffers from many drawbacks, preventing heterogeneous

systems from achieving their full potential [8].

The concept to offload a kernel task to throughput-optimized

accelerators or CPU/GPU combination is shown in figure 1.

Efficient task dispatching and reduction of copying overheads

present important challenges in this heterogeneous computing

style, especially when the job mix in not known in advance.

Accelerators can hardly offer preemptive computing or unified

address space which raises the importance of job scheduling

and of fast methods for data transfers.

���������	
��
�������	�

�����
���	������������

�
�������

�	�����������	�����

����
��	�����
��

�	��������	��������

����

�����	������	
�

Fig. 1. Flow of execution on heterogeneous CPU-Accelerator environment

In this paper, we describe an infrastructure to facilitate

efficient heterogeneous processing in Systems-on-Chip (SoC)

with no need for an I/O Memory Management Unit (IOMMU),

by simplifying the programming of hardware accelerators and

by utilizing efficient data sharing between host CPU and

tightly-coupled hardware accelerators. HSA-driven initiative

proposes sharing of virtual address space between all process-

ing components in the system in order to remove the need of

explicit copies [9]. Similarly, our architecture supports unified
memory addressing, virtual and/or physical, which allows the

host CPU, the accelerators and the dispatching mechanism that

we present hereafter to reference the same virtual and physical

memory space. Our solution mainly targets SoC architectures

and embedded systems that do not include IOMMUs, yet, the

integrated accelerator components can serve applications in

their own virtual address space. With the decline in memory

price the time of scarcity for memory fades away. Hence, our

infrastructure exploits part of system memory space to avert

using an IOMMU and remove its overheads (maintenance

and synchronization with CPU’s MMU, latency in multi-level

page-table walking and silicon cost).

Finally, we avoid OS driver latency and memory copies by

accessing the dispatch subsystem at user-level. We deliver easy

programmability while at the same time we address the reasons

of latencies in today’s communications, kernel launch and data

transfer that introduce delays and variabilities, which are added

no matter the size of the kernel.

The rest of the paper is organized as follows. Section II

discusses background work in optimizing CPU-Accelerator

communication and in dispatching methods. Section III in-

troduces the hardware and software design of the proposed

framework, while section IV presents the full realization of

an accelerator extended embedded system using the ZYNQ

System-on-Chip. Section V evaluates the proposed dispatching

framework and analyzes the key features in relation to close

proposed solutions and finally section VI concludes the paper.

II. PRELIMINARIES AND RELATED WORK

Applications in heterogeneous architectures take advantage

of hardware accelerators and GPUs, by offloading computa-

tions, intensive portions of their execution to the hardware

accelerator, programmable or not, or to the GPU. These

offloaded computation tasks are referred in this paper as

kernels in order to distinguish from OS kernel that is central

part of an operating system. When the CPU dispatches a task

to the hardware accelerator or GPU, it is usually necessary to

pass through an OS service and an OS kernel driver before

finally reaching the final target, which causes non-negligible

performance degradation.

When we offload a computation, the data to be used must

be moved from the memory of the CPU to the memory of the

accelerator device. Only at this stage, data can be used by the

accelerator or by the GPU. This is commonly implemented

by a DMA transfer. This operation requires a pointer to data

(i.e., a virtual address, UserVA) and a size in bytes, as well

as one or more destination addresses depending on the size of

the buffer to be transferred. Then, the OS kernel translates the

userVA to an OS kernel virtual address (kernelVA)and next,

this kernelVA to a list of physical pages (PA) and makes sure

they are ready to be transferred by pinning the memory. The

OS kernel driver uses the list of physical pages to program

the device’s DMA engine(s). After the transfer is completed,

the runtime communication library should eventually clean up

any resources used to pin the memory. After the kernel has

been executed by the accelerator, the processed data must be

moved back to the host memory following the same ping-pong

of buffers. This ping-pong of buffers introduces significant

performance penalty due to intermediate copies.

To address this challenge, technologies mainly targeting

GPU such as GPUDirect RDMA emerge, attempting to enable

a direct path to speed up data transfer between the GPU and a

third-party peer device using standard features of PCI Express

[10]. The mechanics define how a PCIe device can issue

reads and writes to a peer device’s Base Address Registers

(BAR) addresses in the same way that they are issued to

system memory, essentially trying to facilitate low overhead

exchange of memory mapped I/O addresses. However, RDMA

includes some disadvantages due to inconsistent updating of

information between CPU and GPU. Without a technique

called pinning, elements of memory systems can get corrupted

in RDMA-enabled setups. Moreover, mircoservers are devel-

oped with NUMA-based architectures that attempt to optimize

remote accesses [11]. IBM introduced the CAPI interface

to provide a high-performance solution for implementing

computation-heavy algorithms on FPGAs, but is specific to

POWER8 CPU [12]. At the same time, even optimized IOM-

MUs (System MMU by ARM and our prior IOMMU design

[13]) attempt to provide a unified view of virtual address

space to the accelerators; however, this comes at the cost of

latency overheads due to costly I/O TLB management and

CPU interrupting [14][15].

Several researchers explored GPU scheduling [16][17]. Kato

[16] et al., implement a priority-based scheduling policy

using ring buffers in kernel space for multi-tasking environ-

ment, based on monitoring GPU commands issued from user

space. However, for small, frequent acceleration requests, the

overhead of trapping to the kernel can make this approach

problematic.

In another approach, communication libraries such as GAS-

Net, an existing Partitioned Global Address Space (PGAS)

communication API, attempt to provide a unified program-

ming model and API for all components in a heterogeneous

system. Such research efforts attempt to bring performance and

efficiency to the applications that execute in heterogeneous

processing elements, while struggling to reduce latencies of

software stack or even by introducing remote memory access

hardware components [18]. Hardware support for optimizing

different ISA-based heterogeneous systems is also proposed in

a variety of contexts, by accelerator management to mitigate

memory latencies during data transfer [19], or by using

hardware assisted scheduling of variable-sized jobs [20], or

by optimizing intranode communication using DMA assis-

tance [21]. By sharing the virtual address space of CPU and

accelerators, researchers have recently proposed a user-level

library, such as GMAC, to make heterogeneous systems easier

to program while reducing performance penalties [1][22][23].

It is not though guaranteed to successfully map the acceler-

ator’s memory to the same range of virtual memory address

space. To provide programmers the illusion of unified CPU

and GPU memory, runtimes are developed that automatically

migrate data in and out of the GPU memory [7]. Despite the

advancement in programmer convenience, initial investigations

on real hardware show that the performance overhead of GPU

paged memory may be significant [24].

Recently, proposals involve mixed hardware-software de-

signs which rely on placing the shared data in contiguous

kernel-space memory and replace the standard malloc() with

a customized implementation [25]. However, the overhead of

equiping the accelerators with a customized DMA and TLB

is large, while at the same time the kernel-space device driver

is complex enough to handle these.

In this work we describe an infrastructure, the first to

the best of our knowledge, that utilizes a unified address

space among host processors with different ISA and hardware

accelerators, which infrastructure in addition combines hard-

ware support with user-level queuing targeting SoCs with no

IOMMU, which differentiates significantly from HSA specifi-

cation and evaluation frameworks [9][15][26]. This proposed

architecture delivers a programming model which conveniently

helps the programmer to address any hardware accelerator in

a uniform manner.

III. DISPATCHING TO HARDWARE ACCELERATORS

This section presents the key components of the developed

system architecture inspired by the HSA programming model

in SoCs with no IOMMU. Hardware accelerators, referred by

HSA as HSA components, are interfacing the host processor

generally referred as HSA agent via a hybrid dispatcher,

named hereafter Generic Packet Processing Unit (GPPU).

Essentially, the GPPU consists of both hardware components

and a Runtime that provides the interfaces necessary for the

Host CPU to launch compute kernels to the on-chip accelera-

tors. In a typical software architecture stack for programmable

hardware-specific accelerators, which are implemented using

configurable processors such as the ones by Tensilica[27],

we need to transfer the data and to program the hardware

accelerator in order to execute the specific functionality, for

instance program an H264 decoder accelerator or perform the

I/O operation. Figure 2 shows an abstract view of a system that

provides dispatching support via GPPU components. Single

or multiple accelerator units, called hereby HSA on-chip

components can be even connected to a single GPPU. The

Runtime includes userspace and operating system services to

enable an efficient offloading mechanism not only to on-chip

hardware accelerators but also from an accelerator to another

processing component (CPU, GPU, or custom accelerator).

The GPPU supports user-level command queues that are

allocated at runtime. Each queue contains packets (commands)

as defined in the Architected Queuing Language (AQL pack-

ets) and they are allocated and de-allocated by applications

Host
CPUN

Accelerator0

GPPU

System
Interconnect

GPPU Runtime

Host
CPU0

AcceleratorM

GPPU

DDRx System Memory

OS

Accelerator-enabled Applications

Fig. 2. System organization including GPPU-enabled application-specific
processing units as accelerators

through a specific GPPU runtime infrastructure. As defined by

HSA [9], queues are semi-opaque objects: there is a visible

part that is represented by the queue context and the ring buffer

(pointed to by baseAddress) and the invisible part, which

contains the read and write indexes as illustrated in figure

3. The ring buffer can be directly accessed by the application

to initialize the attributes of the job to offload, while the read

and write indexes of the queue can be only accessed using the

specific GPPU runtime.

The host CPU packs a single or a sequence of commands to

fixed size packets. The structure of the packet is known to the

applications. The HSA system architecture specification [9]

defines three packet formats, kernel dispatch, agent dispatch1

and barrier, while in this paper we consider only a single

dispatch packet and the barrier packet. Figure 3 shows the

generic job offloading process to an accelerator and depicts

the dispatch packet format, which is used to launch the kernel

via the pointer that is included in the dispatch packet to the

on-chip accelerator.

The GPPU performs the following functions: i) it manages

requests from user-level applications to offload jobs to ac-

celerator engines; the requests are performed in the form of

packets which are placed in circular queues until the GPPU

serves these queues ii) it mediates the process to offload

kernel jobs and data from user application memory space to a

hardware accelerator and deliver the outcomes of these jobs iii)

it synchronizes concurrent events and signal events to trigger

and notify the HSA agent.

A user-level queue is a shared memory space between the

Host CPU (i.e., HSA Agent) and the GPPU that is used to

implement one-way communication from the Host CPU to

the GPPU. Both, Host CPU and GPPU have to maintain an

internal state able to read and write to the command buffer

in a consistent way. Intranode communication to achieve a

complete offload operation involves the launch, active and

completion phases. The communication protocol between an

application that exploits user-mode dispatching through the

GPPU hardware support and the hardware accelerator is out-

lined in figure 4.

The Host CPU initializes the queue contexts in the GPPU in

order to configure the communication protocol parameters. A

1to distinguish the sender of the packet

Queues

queueFeatures
BaseAddress
DoorBellSignal
size
queueID
serviceQueue

queueType

A
CB D

WriteIndexReadIndex

(Single/Multiple Producers)
(Dispatch/Agent Dispatch)

Header

16 1816 4840 56 bits

Dimensions

10

workgroupSize kernelobjectAddress CompletionSignal

2448 3228

Reserved3
kernargAddress

privatesegment
gridSize

groupsegment
Reserved

AQL dispatch packet

App1 App2

Host CPU

WriteIndex
ReadIndex

System Memory

Doorbell

GPPU Accelerator

DataKernel Job

Fig. 3. Dispatching a job to an accelerator via the GPPU; the GPPU monitors
both the accelerator progress and the flow of submitted jobs. Queue context
and packet format layout; packet size is 64 bytes, fields order to transfer a
packet is from the ’Header’ field

�������	� �������������	��

�������
�������

�������

����������	�����!�����
"����������#�

$��%�
!��
������&���	
�

'������	���
*�
�������"�������+�,�

.������#�

�		���������
����

7��
�+��������+�9��*�����
".������:�#�

;������	
��<��;�����

'�����	���	����	�
;�������!�����

7��
�+��������+�9��*�����
".������:�=����������	���

�<�����	
�������	������#�

��������+����

'�����
*�<��

>��*�
*�<��

'�����
*�<��

>��*�
*�<��

;�
*��	������	
;��
���

;�+�*���
��

Fig. 4. Communication protocol in dispatching a task to HSA Agent through
the GPPU mediation

user application is then allowed to enqueue command packets

to the ring buffer using the Packet ID information. In fact,

a new Packet ID is obtained by calling the GPPU runtime

through a specific API. Thus, by acquiring the new packet ID

an application can calculate the virtual address (userVA) to find

the available packet within the ring buffer. Using the userVA

the packet can be populated according to the predefined AQL

format including parameters and pointers to the workset.

Finally, the application creates a signal to monitor the task

completion and notifies the GPPU that the packet is ready

to be processed via a doorbell. The doorbell signaling allows

each application that offloads packets to notify the GPPU of

packets that are ready waiting to be served. Signals can be

actually considered shared memory locations containing an

integer. The GPPU will dispatch all packets from a circular

queue until a barrier packet is identified. All packets that have

been dispatched must reach their completion phase before any

other packet from the same queue will be launched.

During the GPPU dispatch phase, when the doorbell has

been received, the physical address (PA) of the AQL packet

is obtained using the base address and the readIndex. At this

point the packet is processed by the GPPU on the basis of

its type. When the accelerator has completed processing, the

GPPU can update the readIndex, and can set the packet as

invalid. Finally, the signal included in the packet will be reset

by the GPPU, so the host application can be waked up and

carry on its execution. The GPPU may include a DMA engine

in order to facilitate fast transfer of packets that are ready to

be processed. Hence, a number of packets can be transferred

to the GPPU’s local buffers for processing ahead of time while

the accelerator is active.

IV. DESIGN AND REALIZATION

A proof-of-concept design is prototyped utilizing the ZYNQ

SoC architecture [28], which includes two ARM Cortex A9

CPUs with 32KB I/D L1 cache, and 512KB L2 cache, while

the board (Zedboard) integrates also a 512MB DDR3 memory.

Figure 5 depicts the organization of the System-on-Chip that

includes one GPPU which interfaces two MicroBlaze soft-

CPUs that act as dedicated on chip hardware programmable

accelerators. We restricted the OS to use less physical memory

than the 512MB of the actual DDR3 chip and the remaining

physical partition is utilized to maintain the AQL data struc-

tures (the circular queues), as well as the data and kernels to

be offloaded to the hardware accelerators. As shown in figure

5, the physical partition at high system memory allows the

GPPU and the accelerators to access this partition without an

IOMMU.

The register block is logically included inside the GPPU

hardware component and is the memory-mapped interface to

the AQLSM runtime. To avoid synchronization issues some

registers must be exposed as read-only to the appropriate

master. For instance, the queue tail pointers (writeIndex) are

read-only by the GPPU, while the head pointers (readIndex)

are read-only by the AQLSM.

A. Software API and Communication Protocol

The applications running on the host CPU (ARM Cor-

tex A9) first initialize the GPPU runtime, named here-

after AQL-aware system manager (AQLSM), via aqlsm init()
function. Then, each application creates a queue via

aqlsm queue create() of the AQLSM, that returns a (userVA)

pointer to the queue context shown in figure 3. This context

will be used to access the AQL packets as described hereafter

using the MMU of the Host CPU. The GPPU on the other

hand accesses the same objects i.e., queues, kernels and data,

by using the physical addresses formed by adding the memory

partition’s base address and the corresponding offset.

When an application calls the aqlsm queue create() func-

tion, AQLSM delivers the QID, that is a UserVA pointer based

�
�
�
�
�
�

7�
�<�
�

�

,*��,��	��

����?��

@EV��	��"����������#�

>��*�
*�<�
'�����
*�<�

�!7����
V�

�!7����
VX��

Y������
�	
��<��

Z[�������

!@���"�	
��������	
\����	����	
\�
������	����	
\����#�

�!7������
;����������

!�?�		�.����

�����������������

���
��������
��	����
���� �

�!"�
#������
������

�
�������+���,�;�+�*�����

�!7;���
@�
����?��

���������
;����������

������������������$%����

��	����������7	����

,*��,��	��

��

]��

]��
]]�

!�?'��������

�EE>.^77?.�;^���>�

@�_?!%^%^;�

!?�E�V^>;?.�;^���>�
!�?>��*����

`[�
`f�

��>?!%^%^;?.�;^���>�

`Z�

��>?���?.�;^���>�

`{�

���|^?!%^%^;�

`}�

7E�~^�?!%^%^;�

``�

>^!%^;?�^���|�^�

����

�E@�7^^�?���~^;�

����

�E@�7^^�?���~^;?!��

����

;+���*�9',;'�>����

��@�_?!%^%^;�

$��%?;�>�
���;?�@E%V�

�E@�7^^�?���~^;?!]��

��]�
��[�

����
�]f�

���������	���

�������7	����
@��	���

$��%�

&��������
#������

Fig. 5. Design of a GPPU subsystem on a ZYNQ SoC prototype platform
and HW/SW interface registers. AQL Data Structures can also be realized in
the GPPU if trading speed for scalability

on which the application accesses the following data structures

directly or by calling a specific function of the AQLSM: (i) the

ring buffer, which resides in system memory; the queue size

is fixed and is determined when it is allocated, (ii) the data

buffer (workset), which is a fixed 8KB-size partition in system

memory that is private to this application, (iii) the Doorbell

signal for each queue, which is located in the GPPU, (iv) the

queue writeIndex and readIndex pointers to the circular buffer;

the application uses the writeIndex to access the circular queue

and inject a packet and the readIndex which is a shadow copy

of the same register manipulated by the GPPU, in order to

identify if the queue is empty or full.

In the dispatch phase the application needs to fill the con-

tents of the packet, to enqueue the packet to the assigned queue

and to signal the Doorbell notification. This is done by the

AQLSM runtime API that implements the appropriate acquire

release semantic. The completion phase of the acceleration

process is implemented by signals stored in the AQL packets

that are manipulated only by the AQLSM runtime to avoid

potential attacks and misused signaling. The advantage of

signal over shared memory is that it is more efficient in term

of power and speed enabling each process to go to sleep and

allow the AQLSM to trigger the activity of each application

when the acceleration is complete and the energy constraints

allow to wake up suspended tasks.

A single circular queue requires one write and one read

pointer. When an application is enabled to use such a queue

then a master write pointer is created and directly manipulated

by the AQLSM, while a shadow write pointer is also created

in the GPPU. At the same time a master read pointer is created

and manipulated by the GPPU and its shadow read pointer is

used by the AQLSM runtime. When the user application needs

to enqueue one packet then the current write pointer is used

and always compared to the value of the read pointer to track

if the queue is full; in this case it is required to retrieve the

value from the master copy of the read pointer that is located at

the GPPU. The opposite happens from the side of the GPPU.

The software runtime manager for the GPPU, AQLSM (see

figure 6), is running on the host CPU and communicates with

the applications to manage the hybrid (hw/sw) dispatching

queues and to communicate with the GPPU for initializations

and queue maintenance (e.g., activation, free queues, synchro-

nization).

�
�

��>�
�

;������
@��	���

,*��,��	��

���������
!������

���
��������
��	����
���� �

�!7;���
@�
����?��

���������
;����������

;������;+���*�@�������!�����

�����

�����
�����@�������!�����

�����@�������!�����

!�?'�����
*�<�
�����

$��%�
;+���*�
>����

!�*\�
��������*�

$��%��

Fig. 6. The AQLSM system manager serves AQL-aware applications through
SYS V IPC message queues

This AQLSM runtime provides offsets (indexes) to the

GPPU and to each application. The GPPU is initialized with

the base address (i.e., the physical address) of the partition of

the DDR system memory that maintains the applications data

and then utilizes the offsets to determine the base address of

each queue.

Initially, each application receives a queue identifier

(QID) after a successful allocation by the AQLSM.

Then, the application uses a call to the API

aqlsm queue add write index relaxed(QID,1) of the

AQLSM to request the Packet ID. Packet IDs use the

write and read indexes which use queue relative values, e.g.,

0, 1, 2. . .,15 for a circular buffer of 16 slots for 16 packets.

Then, the application adds the Packet ID to QID (Queue

pointer) to get the base address of the AQL packet. The

GPPU calculates the physical address baseAddressphys using

the base address in the AQL data structure and the pointer

value times the packet size; in other words,

baseAddressphys+((QID×queueSize)+readIndex×AQLpacketSize)

is the actual physical address for read. The user application on

the other hand calculates the virtual address baseAddressvirt
based on the base address that is returned by the mmap

function. Hence,

baseAddressvirt+((QID×queueSize)+writeIndex×AQLpacketSize)

is the actual virtual address used for writes, as now

baseAddressvirt is the return value of mmap.

The following algorithm depicted in Algorithm 1 listing

presents the GPPU functionality.

Algorithm 1: GPPU queue management

input : Queues Base@, Jobs Base@, #Accelerators

while GPPU enabled do
for i ← 0 to MAXQ− 1 do

if queue active and not frozen and doorbell and available
accelerators then

update readPtr;
fetch packet;
assign job to accelerator;
reduce available accelerators;
if no more accelerators then freeze the queue;

end
end
for j ← 0 to MAXACC − 1 do

if any accelerator completed its job then
deliver the packet to application with completion
signaling;
if readPtr equal writePtr reset doorbell;
set the queue’s complete packet status bit;
set the packet’s complete bit in queue status;
activate frozen queue;
increase available accelerator;

end
end

end

B. Queue Management

Queue management is performed by the AQLSM runtime

which cooperates with a hardware entity that resides in the

GPPU and is responsible first, to provide the pointer of the

queue (QID) to each application, based (i) on the service level

that is requested by the application and (ii) on the system en-

ergy and performance status and second, to communicate with

each GPPU to synchronize the queue management (allocation

and release) process.

Queue allocation and release techniques constitute impor-

tant considerations for efficient management in terms of bal-

ancing between performance and energy constraints. GPPU

supports multiple queues in order to address multiple accel-

erators and different priorities in dispatching. Searching for

instance only active queues requires less energy with regard to

the number of operations performed by the GPPU. The queue

management protocol rules and operations are as follows.

• When a new queue needs to be allocated, the AQLSM

reads the ACTIVE QUEUES register of the GPPU to

check which queue is empty. If the Queue is idle (deac-

tivated), then the AQLSM first initializes the WritePtr

and ReadPtr in the GPPU, then updates the AC-

TIVE QUEUES register of the GPPU and finally returns

the write, read pointers and the queueID to the requesting

task.

• If the Queue is already active, then the AQLSM stores

its deactivate command in the DEACTIVATE register

in the GPPU by setting the corresponding bit in the

QID that needs to release. The GPPU will serve this

command when the remaining packets from the queue

are dispatched and then the corresponding bit of the

ACTIVE QUEUES register will be reset.

1) Doorbell Signaling and Synchronization: The Doorbell

signaling indicates to the GPPU that ready packets exist in the

queue. The GPPU must examine the read and write pointers

of the corresponding circular queue to identify the number

of packets that are pending. After the GPPU schedules these

packets it will reset the Doorbell signal if the queue read

pointer reaches the write pointer. However, when the GPPU is

processing the packets, one application may update the write

pointer and signal the Doorbell in the meantime, thus causing

a race. This new event signal may be missed when the GPPU

decides to clear the Doorbell register. This race is addressed

by allowing the GPPU to compare the queue write and read

pointers once again, after clearing the Doorbell. If the write

pointer has advanced and the Doorbell should be set then

the second check will discover that a synchronization issue

occurred and immediately will restore the Doorbell signal to

the correct value (‘1’).

2) Read and Write Indexes in a Shared Queue:
Each application issues a request to the AQLSM via the

AQLSM queue add write index relaxed() API. Next, the ap-

plication can fill the packet fields at the received userVA

and update the Doorbell signal. However, this mechanism

presents potential hazards in the case of multiple applications

(producers) that share the same queue. The GPPU should

maintain additional pointers to handle out-of-order packet

transmission since there is no guarantee that the applications

will signal the doorbell in the same order as the order that

the AQLSM delivers the write indexes. Thus, the GPPU

could potentially advance its own readIndex past one or more

packets that are not ready yet. For example, as figure 7

shows a potential scenario, two applications receive two write

pointers (i.e., three and four) but may signal the doorbell

and update the write pointers in a different order. Notice that

the AQLSM updates the shadow pointer in the GPPU before

the doorbell signal. Then the GPPU runs in risk to read the

packet from a readIndex that is not valid yet; provision is

mandatory if decoupling of the following events is permitted

for performance reasons: writeIndex request, packet content

preparation and packet launching (i.e., doorbell signaling).

4

CPU

GPPU

P1
AQLSM

stub

P2
AQLSM

stub

3

readIndex

writePtr

System
Memory

Master
Copy

writeIndex writeIndex

76543210

AQLSM

Doorbell

Fig. 7. Synchronization issue example; unless AQLSM allows for uncon-
trolled serving of application requests for available writeIndex, GPPU will
access packet 3, which may not be ready yet

To avoid fairness issues or additional read pointers and

complex FSMs, the AQLSM resolves out-of-order enqueues

through enforcing serialization of application requests for the

next available writeIndex position. One application can make

a request for more than one slots and will be granted the

writeIndex if no other application is pending to launch its

packets. After the application initializes the packets it signals

the Doorbell and notifies the AQLSM to unlock the writeIndex

of this queue.

To ensure atomicity we investigated various options, mostly

focused on the ARMv7 architecture. Thus, as shown in figure

8, by using the special Load-Exclusive and Store-Exclusive

synchronization primitives LDREX/STREX we can achieve

the lowest latency. Figure 8 demonstrates benchmarking results

for a scaling number of threads that perform one million

lock operations using a few different methods. Among them

a custom hardware solution is shown embedded in the FPGA

fabric, which costs more that the inherent ARM core atomic

instructions due to the latency when the CPU accesses the

hardware mutex block through a number of interconnects.

0

5

10

15

20

25

2 3 4 5 6 7 8

tim
e

(s
ec

)

Threads

LDREX/STREX
Linux Mutex
Linux Futex
HW Mutex

Fig. 8. Benchmarking one million atomic increments of a shared integer
when scaling the number of threads from two to eight

3) Notification and Queue Deactivation Synchronization:
The AQLSM decides the number of queues to activate on

the basis of performance requirements and of runtime power

constraints; this is among our goals in future work. Since

packet processing for a particular queue may be in progress,

the AQLSM issues a request for deactivation to the GPPU in

order for the GPPU to complete any pending operation and

then to deactivate the queue. The application that had already

issued requests for this queue will be serviced and the AQLSM

will not provide further access to this queue.

V. PERFORMANCE EVALUATION

For an efficient dispatching infrastructure in a SoC, it is

imperative to minimize the costs of communication, protocol

and data transfers, as well as the synchronization penalties.

We have intentionally forced the MicroBlaze accelerators to

execute a tiny kernel acceleration function, i.e., a matrix

multiplication of 2×2 arrays of integers, in order for the

computation time not to dominate the overall delay of the

offloading process, and thus demonstrate the opportunities by

using the proposed dispatching mechanism. Further, notice that

we focus on evaluating the efficiency of the dispatching hard-

ware and software framework and not on designing specialized

circuitry for tackling the computationally-intensive functions

from software and ease the burden of the processor.

As baseline system we use the developed platform with a

single MicroBlaze; the AQLSM configures the GPPU to utilize

only a single accelerator. Figure 9 shows the performance

of the GPPU-based system when applications share a single

queue or when applications utilize an independent, private

queue; the plot on the left depicts the results with one

accelerator and the right plot the results when we integrate

two accelerators. When an application contacts the AQLSM,

then it must also specify the desired type of service and in

response the AQLSM delivers the appropriate queue.

0
1000
2000
3000
4000
5000
6000
7000
8000

Pa
ck

et
s/

se
c

Client applications using private vs shared queues (1 ACC)

packets/sec (queue)
packets/sec (system)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Pa
ck

et
s/

se
c

Client applications using private vs shared queues (2ACC)

packets/sec (queue)

packets/sec (system)

Fig. 9. GPPU performance, in packets/sec, for a single task and for the full
system when dispatching tasks to HSA Agents (a single and two accelerators)
using independent vs shared queues; notice that all applications (or clients)
in the shared scenarios, share a single queue

A non-linear increase is observed, mainly due to the limited

capacity to handle job acceleration with only two MicroBlaze

cores. Additionally, contention to acquire the next available

packet in a shared queue gives a foreseeable delay. Through

increasing the number of queues as available resources for

the applications, the GPPU can bring significant performance

optimization only if we activate more accelerators. Support-

ing independent queues incurs queue management and syn-

chronization, which requires negligible complexity and most

importantly provides less perturbations among the different

applications. When the AQLSM employs independent queues

per application, then synchronization is not necessary, which

results in 12.9% (2 tasks), 14.3% (3 tasks), in 17.6% and in

27.2% improvement over the shared queue case.

An application typically makes a request for an offload

operation and waits for the outcome that the GPPU signals

using the completion signal. However, the application can

potentially submit more jobs to the accelerator engines in the

meantime, if no dependencies exist. The goal is to overlap

the wait interval with useful work. Figure 10 depicts the

performance improvement that is accomplished when the

applications submit one extra job before the previous one is

completed. The rate of the processed packets shows larger

improvement, almost 22%, when compared to the baseline

case of a single application utilizing the accelerators.

The breakdown of a complete offload operation through the

GPPU is outlined in table I. To complete a single dispatch the

total latency, comprised of the GPPU operations and of the

accelerator activity is 95.47 μsec. If we include the delay of

the AQLSM runtime then, the delay accounts for 154 μsec in

average. For reference, the time delay for the host ARM Cortex

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

pa
ck

et
s/

se
c packets/sec (queue)

packets/sec (system)

packets/sec (queue) -
2pkts

packets/sec (system) -
2pkts

Fig. 10. GPPU performance (packets/sec) exploiting two packets(jobs) per
request for a single task (queue) and for the full system (two accelerators)

A9 CPU to perform a single 2×2 matrix multiplication is 11

μsec.

TABLE I
COST BREAKDOWN OF A SINGLE JOB OFFLOAD (2X2 MATRIX

MULTIPLICATION)

Operation Clk Cycles Delay
(F: 150MHz) (μsec)

GPPU fetch/dispatch 5442 36.28
GPPU collect/send 2532 16.88
ACC processing 6347 42.31
Host-AQLSM processing (F: 666MHz) 58.83
Total processing 154.00

To analyze the sources of latency we used hardware probes

(AXI performance monitors) to dynamically measure the

traffic incurred by the GPPU component and by the two

accelerators that are connected to different memory controller

ports. Table II depicts the required throughput of the GPPU-

based infrastructure to accomplish a full system performance

of more than 10.5 K packets/sec when all 32 queues are

active. Each application issues two requests before asserting

the doorbell signal to the GPPU.

TABLE II
SUMMARY OF PERFORMANCE AND THROUGHPUT ACHIEVED BY A SINGLE

GPPU TO PERFORM A 2X2 MATRIX MULTIPLICATION

Queues/Applications 1 5 16 32
Delay (512 pkt/q, sec) 0.0709 0.25 0.7769 1.547
Packets/sec (queue,2pkts) 7200.7 1775 658.9 330.9
Packets/sec (system,2pkts) 7200.7 8875 10543.9 10588.8
GPPU Throughput (MB/s) 0.924 1.28 1.35 1.36
Accelerator Thr. (MB/s) 0.52 0.722 0.759 0.762

The second line summarizes the mean latency to complete

512 dispatching operations per application. Since both the

GPPU and the MicroBlaze accelerators use separate 64-bit

AXI interfaces operating at 150 MHz, which are underutilized

as the measurements show, the software components of our

GPPU design become the sources of latency.

A. Discussion

Data transfer and launch overheads associated with offload-

ing is in fact a critical component of the runtime of on-

chip accelerator workloads in the embedded systems domain.

Even when using high-end CPUs and GPUs, researchers report

more than 8.2 μsec are spent to enqueue a command into

the driver and to process the command [29]. To address

these delays, various mechanisms are proposed, such as early

execution of kernels with special hardware support as guards

on memory operations [29], or using hardware assistance by

DMA units [21] [30], and even collaborative kernel driver

memory management [31]. Although recent GPUs attempt

to unify the CPU and GPU virtual address spaces [32], and

programmers can thus use the pinned host memory to make

kernels directly interact with CPU memory still data transfers

suffer large delays. Nevertheless, notice that applications in our

proposal benefit from sharing the same physical memory with

the CPU, even if the CPU creates a virtual address space for

the applications. Further, recent proposals (e.g., [30]) disregard

the need to support scheduling in job dispatching. Last but not

least, the proposal in [30] has unavoidable overheads due to

extra copies of data to GPU external memory and due to meta-

data maintenance, while it requires a more complicated pro-

gramming model. The advantages of our proposed IOMMU-

free dispatching and acceleration are also advocated by recent

works such as Dashti and Fedorova [15] that investigated

in detail benchmarks by using platform architecture specifics

(AMD Kaveri) along with different software stacks (OpenCl

1.2, 2.0 and HSA). The performance impact of supporting

unified memory in terms of translation overheads (dTLB loads

and interrupts) is remarkable, essentially showing that HSA is

in its infancy over the platform they used and proving the value

of our innovative scheme, beating the cost of I/O memory

management.

Additionally, in comparison to using programming conve-

nience features by the GPU industry, implementations show

significant performance degradation compared to programmer

controlled memory management. Hence, it is required to

control the page size to match the problem size in paged

GPU memory, to improve performance [24]. Our proposal

is free from such GPU’s MMU overheads, like handling of

page translation faults, which are often disregarded ([16]). We

benefit from the inherent low-latency accelerator accesses to

system memory, in contrast to off-chip GPUs and off-chip

hardware accelerators that require several PCIe round trips

and significant interaction with the host CPU not only for

data transfers, but also for translating the virtual to physical

addresses. Even in heterogeneous SoCs with tighter coupling

of accelerators to system memory, accelerators can still di-

rectly access the applications data without paying the costs of

an IOMMU.

Finally, AQLSM runtime provides only an API to the user,

thus securing user operations from illegal or accidentally

wrong accesses to system memory. Essentially, AQLSM is

responsible for access and sharing the GPPU queues and data

partitions in a secure and fair manner. Additionally, GPPU

not only dispatches job requests but also validates requests to

access both accelerator and memory through queue allocation

and usage control for the lifetime of the acceleration process.

VI. CONCLUSION

To address the challenge of efficient communication in het-

erogeneous architectures, we proposed an architected dispatch

mechanism over unified system memory among CPUs and

tightly-coupled accelerators, without the need for I/O memory

management for virtual to physical address translation. By

relieving the programmer from explicit management of trans-

fers between the CPU memory and accelerators memory, we

designed a scalable communication mechanism using a shared

high-bandwidth memory system. We presented a realization of

hardware/software dispatching infrastructure using the ZYNQ

SoC that achieves more than ten thousand offload operations

per second. Overall, the presented mechanisms offer substan-

tial improvements in homogenizing the offloading process to

different accelerators while eliminating overheads regarding

IOMMU associated operations.

To the best of our knowledge, GPPU infrastructure is

the first work to utilize packet-based dispatching while us-

ing unified physical and virtual memory between CPU and

hardware accelerator, which targets high performance and

easy programmability. Fitting our mechanisms with existing

programming environments such as OpenCL, is among our

future goals, along with integrating the GPPU infrastructure

with accelerators over PCIe.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-

back on this work. This work has been partially funded

by National Matching Funds 2017-2018 of the Greek Gov-

ernment, and more specifically by the General Secretariat

for Research and Technology (GSRT), related to EU project

”SAVE (GA No 610996), Self-Adaptive Virtualisation-Aware

High-Performance/Low-Energy Heterogeneous System Archi-

tectures 01/09/2013 31/08/2016” (No 80518).

REFERENCES

[1] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W.-
m. W. Hwu, “An asymmetric distributed shared memory model for
heterogeneous parallel systems,” in Proceedings of the 15th ASPLOS,
2010, pp. 347–358.

[2] M. Coppola, B. Falsafi, J. Goodacre, and G. Kornaros,
“From embedded multi-core SoCs to scale-out processors,”
in Proceedings of the Conference on Design, Automation
and Test in Europe, 2013, pp. 947–951. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2485288.2485516

[3] L. Seiler and et al., “Larrabee: A many-core x86 architecture for visual
computing,” IEEE Micro, vol. 29, pp. 10–21, 2009.

[4] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008.

[5] J. E. Stone et al., “Accelerating molecular modeling applications with
graphics processors,” J Comp. Chemistry, vol. 28, pp. 2618–2640, 2007.

[6] J. Shen, J. Fang, H. Sips, and A. L. Varbanescu, “Performance gaps
between OpenMP and OpenCL for multi-core CPUs,” in Proceedings
of the 2012 41st ICPP Workshops, 2012, pp. 116–125.

[7] NVIDIA, http://devblogs.nvidia.com/parallelforall/unified-memory-in-
cuda-6/, 2013, unified Memory in CUDA 6.

[8] V. Garca-Flores, E. Ayguade, and A. J. Pena, “Efficient data sharing
on heterogeneous systems,” in Proceedings of the 46th International
Conference on Parallel Processing (ICPP), 2017, pp. 121–130.

[9] HSAFoundation, “HSA platform system architecture specification,” pro-
visional 1.0 - Ratified April 18, 2014.

[10] NVIDIA, “Developing a linux kernel module using rdma for gpudirect,”
TB-06712-001 v6.5, 2014. [Online]. Available: http://docs.nvidia.com

[11] Y. Durand et al., “Euroserver: Energy efficient node for european micro-
servers,” 2014.

[12] B. Wile, “Coherent accelerator processor interface (CAPI)
for POWER8 systems.” [Online]. Available: www-
304.ibm.com/webapp/set2/sas/f/capi/home.html

[13] G. Kornaros, K. Harteros, I. Christoforakis, and M. Astrinaki, “I/O
virtualization utilizing an efficient hardware system-level memory man-
agement unit,” in 2014 International Symposium on System-on-Chip
(SoC), Oct 2014, pp. 1–4.

[14] P. Vogel, A. Kurth, J. Weinbuch, A. Marongiu, and L. Benini, “Efficient
virtual memory sharing via on-accelerator page table walking in hetero-
geneous embedded socs,” ACM Trans. Embed. Comput. Syst., vol. 16,
no. 5s, pp. 154:1–154:19, Sep. 2017.

[15] M. Dashti and A. Fedorova, “Analyzing memory management methods
on integrated cpu-gpu systems,” in Proceedings of the 2017 ACM SIG-
PLAN International Symposium on Memory Management, ser. ISMM
2017, 2017, pp. 59–69.

[16] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “TimeGraph:
GPU scheduling for real-time multi-tasking environments,” in Proceed-
ings of the 2011 USENIX Conference on USENIX Annual Technical
Conference, 2011, pp. 2–2.

[17] K. Menychtas, K. Shen, and M. L. Scott, “Disengaged scheduling for
fair, protected access to fast computational accelerators,” in Proceedings
of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’14,
2014, pp. 301–316.

[18] R. Willenberg and P. Chow, “A remote memory access infrastructure for
global address space programming models in FPGAs,” in Proceedings
of the ACM/SIGDA FPGA, 2013, pp. 211–220.

[19] J. Cong et al., “Architecture support for accelerator-rich CMPs,” in
Proceedings of the 49th DAC, 2012, pp. 843–849.

[20] G. Kornaros and M. Pratikakis, “VWQS: A dispatching mechanism
of variable-size tasks in heterogeneous systems,” in 2016 International
Conference on High Performance Computing Simulation (HPCS), July
2016, pp. 196–203.

[21] F. Ji et al., “DMA-assisted, intranode communication in GPU accelerated
systems,” in Proceedings of the 14th HPCC, 2012, pp. 461–468.

[22] MulticoreWareInc, “Global memory for accelerators.” [Online].
Available: www.multicorewareinc.com/gmac.html

[23] “GMAC-2: Easy and efficient programming for cuda-based systems,”
NVIDIA GPU Tech Conference GTC 2012, May 14-17, 2012. [Online].
Available: http://ccoe.ac.upc.edu/projects

[24] R. Landaverde, T. Zhang, A. Coskun, and M. Herbordt, “An investigation
of unified memory access performance in CUDA,” in Proceedings of
High Performance Extreme Computing Conference (HPEC), 2014, pp.
1–6.

[25] P. Mantovani, E. G. Cota, C. Pilato, G. D. Guglielmo, and L. P. Carloni,
“Handling large data sets for high-performance embedded applications
in heterogeneous systems-on-chip,” in 2016 International Conference on
Compliers, Architectures, and Sythesis of Embedded Systems (CASES),
Oct 2016, pp. 1–10.

[26] Y. Sun, X. Gong, A. K. Ziabari, L. Yu, X. Li, S. Mukherjee, C. Mc-
cardwell, A. Villegas, and D. Kaeli, “Hetero-mark, a benchmark suite
for cpu-gpu collaborative computing,” in 2016 IEEE International
Symposium on Workload Characterization (IISWC), Sept 2016, pp. 1–
10.

[27] Tensilica Customizable Processor IP. [Online]. Available:
http://ip.cadence.com/ipportfolio/tensilica-ip

[28] Xilinx, “Zynq-7000 all programmable SoC data sheet: Overview,” 2017,
dS190 (v1.11).

[29] D. Lustig and M. Martonosi, “Reducing GPU offload latency via fine-
grained CPU-GPU synchronization,” in Proceedings of the 19th HPCA,
2013, pp. 354–365.

[30] Y. Kim, J. Lee, J.-E. Jo, and J. Kim, “GPUdmm: A high-performance
and memory-oblivious GPU architecture using dynamic memory man-
agement,” in Proceedings of the 20th HPCA, Feb 2014, pp. 546–557.

[31] O. Tomoutzoglou, D. Bakoyannis, G. Kornaros, and M. Coppola,
“Efficient communication in heterogeneous SoCs with unified ad-
dress space,” in 2016 11th International Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), 2016, pp. 1–6.

[32] NVIDIA, CUDA C Programming Guide.

